

Sensors & Measurement

"Seeing is forgetting the name of what one sees"

- L. Weschler

METR 4202: Advanced Control & Robotics

Dr Surya Singh

Lecture # 6

August 30, 2013

metr4202@itee.uq.edu.au

http://itee.uq.edu.au/~metr4202/

(co) ex-Mo-so

Schedule

Week	Date	Lecture (F: 9-10:30, 42-212)			
1	26-Jul	Introduction			
2	2-Aug	Representing Position & Orientation & State (Frames, Transformation Matrices & Affine Transformations)			
3	9-Aug	Robot Kinematics			
4	16-Aug	Robot Dynamics & Control			
5	23-Aug	Robot Trajectories & Motion			
6	30-Aug	Sensors & Measurement			
7	6-Sep	Perception / Computer Vision			
8	13-Sep	Localization and Navigation			
9	20-Sep	State-Space Modelling			
	27-Sep	State-Space Control			
10	4-Oct	Study break			
11	11-Oct	Motion Planning			
12	18-Oct	Vision-based control (+ Prof. P. Corke or Prof. M. Srinivasan)			
13	25-Oct	Applications in Industry (+ Prof. S. LaValle) & Course Review			

METR 4202: Robotics

Announcements:

• Adam Keyes Needs More Volunteers

• <u>UQ Summer Research Program</u>: Applications Due August 30th

30 August 2013

Quick Outline

1. Kinematics Lab Recap

2. <u>Perception → Camera Sensors</u>

- 1. Image Formation
 - → "Computational Photography"
- 2. Calibration
- 3. Feature extraction
- 4. Stereopsis and depth
- 5. Optical flow

Image Formation:

Lens Optics (Aperture / Depth of Field)

$$N = \frac{f}{\#} = \frac{f}{d}$$

http://en.wikipedia.org/wiki/File:Aperture_in_Canon_50mm_f1.8_II_lens.jpg

METR 4202: Robotics

30 August 2013 - 15

The Projective Plane

- Why do we need homogeneous coordinates?
 - Represent points at infinity, homographies, perspective projection, multi-view relationships
- What is the geometric intuition?
 - A point in the image is a ray in projective space

- Each *point* (x,y) on the plane is represented by a *ray* (sx,sy,s)
 - all points on the ray are equivalent: $(x, y, 1) \cong (sx, sy, s)$

Slide from Szeliski, Computer Vision: Algorithms and Applications

METR 4202: Robotics

Projective Lines

• What is a line in projective space?

- A line is a *plane* of rays through origin
 - all rays (x,y,z) satisfying: ax + by + cz = 0

in vector notation:
$$0 = \begin{bmatrix} a & b & c \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

• A line is represented as a homogeneous 3-vector I Slide from <u>Szeliski</u>, <u>Computer Vision: Algorithms and Applications</u>

30 August 2013 - 18

2-D Transformations

- Translation x' = x + t
- Rotation x' = R x + t
- Similarity x' = sR x + t
- Affine x' = A x
- Projective x' = A x

here, x is an inhomogeneous pt (2-vector) x' is a homogeneous point

2-D Transformations

Name	Matrix	# D.O.F.	Preserves:	Icon
translation	$\begin{bmatrix} I \mid t \end{bmatrix}_{2 \times 3}$	2	orientation + · · ·	
rigid (Euclidean)	$igg[egin{array}{c c} R & t \end{bmatrix}_{2 imes 3}$	3	lengths +···	\Diamond
similarity	$\begin{bmatrix} sR \mid t \end{bmatrix}_{2 \times 3}$	4	angles +···	\Diamond
affine	$\left[egin{array}{c} A \end{array} ight]_{2 imes 3}$	6	parallelism + · · ·	
projective	$\left[egin{array}{c} ilde{H} \end{array} ight]_{3 imes 3}$	8	straight lines	

METR 4202: Robotics

30 August 2013 - 22

Planar Projective Transformations

- Perspective projection of a plane
 - lots of names for this:
 - homography, colineation, planar projective map
 - Easily modeled using homogeneous coordinates

$$\begin{bmatrix} sx' \\ sy' \\ s \end{bmatrix} = \begin{bmatrix} * & * & * \\ * & * & * \\ * & * & * \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$\mathbf{p}^{2} \qquad \mathbf{H} \qquad \mathbf{p}$$

To apply a homography **H**

- compute $\mathbf{p'} = \mathbf{H}\mathbf{p}$
- p'' = p'/s normalize by dividing by third component

Slide from Szeliski, Computer Vision: Algorithms and Applications

METR 4202: Robotics

Image Rectification

To unwarp (rectify) an image

- solve for **H** given **p**" and **p**
- solve equations of the form: sp" = Hp
 - linear in unknowns: s and coefficients of H
 - need at least 4 points

Slide from Szeliski, Computer Vision: Algorithms and Applications

30 August 2013 - 24

3D Projective Geometry

- These concepts generalize naturally to 3D
 - Homogeneous coordinates
 - Projective 3D points have four coords: P = (X,Y,Z,W)
 - Duality
 - A plane L is also represented by a 4-vector
 - Points and planes are dual in 3D: L P=0
 - Projective transformations
 - Represented by 4x4 matrices T: P' = TP, L' = L T-1
 - Lines are a special case...

Slide from Szeliski, Computer Vision: Algorithms and Applications

3D → 2D Perspective Projection

Slide from Szeliski, Computer Vision: Algorithms and Applications

METR 4202: Robotics

30 August 2013 - 26

3D → 2D Perspective Projection

• Matrix Projection (camera matrix):

It's useful to decompose \prod into $T \to R \to \text{project} \to A$

$$\begin{split} \boldsymbol{\Pi} = & \begin{bmatrix} s_x & 0 & -t_x \\ 0 & s_y & -t_y \\ 0 & 0 & 1/f \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \boldsymbol{R}_{3x3} & \boldsymbol{0}_{3x1} \\ \boldsymbol{0}_{1x3} & 1 \end{bmatrix} \begin{bmatrix} \boldsymbol{I}_{3x3} & \boldsymbol{T}_{3x1} \\ \boldsymbol{0}_{1x3} & 1 \end{bmatrix} \\ & \text{intrinsics} & \text{projection} & \text{orientation} & \text{position} \end{split}$$

Slide from Szeliski, Computer Vision: Algorithms and Applications

METR 4202: Robotics

3D Transformations

Name	Matrix	# D.O.F.	Preserves:	Icon
translation	$egin{bmatrix} I & t \end{bmatrix}_{3 imes 4}$	3	orientation $+\cdots$	
rigid (Euclidean)	$igg[R ig t igg]_{3 imes 4}$	6	lengths +···	\Diamond
similarity	$\begin{bmatrix} sR \mid t \end{bmatrix}_{3\times 4}$	7	angles +···	\Diamond
affine	$\left[egin{array}{c}A\end{array} ight]_{3 imes4}$	12	parallelism $+\cdots$	
projective	$\left[egin{array}{c} ilde{H} \end{array} ight]_{4 imes4}$	15	straight lines	

Slide from Szeliski, Computer Vision: Algorithms and Applications

METR 4202: Robotics

30 August 2013 - 28

Projection Models

- Orthographic
- Weak Perspective

$$\mathbf{\Pi} = \begin{bmatrix} i_x & i_y & i_z & t_x \\ j_x & j_y & j_z & t_y \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• Affine

$$\Pi = f \begin{bmatrix} i_x & i_y & i_z & t_x \\ j_x & j_y & j_z & t_y \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• Perspective

$$\Pi = \begin{bmatrix}
* & * & * & * \\
* & * & * & * \\
0 & 0 & 0 & 1
\end{bmatrix}$$

• Projective

$$\Pi = \begin{bmatrix} R & t \end{bmatrix}$$

Slide from Szeliski, Computer Vision: Algorithms and Applications

METR 4202: Robotics

Properties of Projection

- Preserves
 - Lines and conics
 - Incidence
 - Invariants (cross-ratio)
- Does not preserve
 - Lengths
 - Angles
 - Parallelism

Fun With Vanishing Points

Slide from Szeliski, Computer Vision: Algorithms and Applications

30 August 2013 - 32

Vanishing Lines

- Multiple Vanishing Points
 - Any set of parallel lines on the plane define a vanishing point
 - The union of all of these vanishing points is the horizon line

METR 4202: Robotics

Transformations

- x': New Image & \underline{x} : Old Image
- Euclidean: (Distances preserved)

$$x' = \left[\begin{array}{cc} R & t \end{array} \right] \underline{x}$$

• Similarity (Scaled Rotation): (Angles preserved)

$$x' = [sR \ t] \underline{x}$$

Fig. 2.4 from Szeliski, Computer Vision: Algorithms and Applications

METR 4202: Robotics

30 August 2013 - 37

Transformations [2]

- Affine : (|| lines remain ||)
- $x' = \left[\begin{array}{ccc} a_{00} & a_{01} & a_{02} \\ a_{10} & a_{11} & a_{12} \end{array} \right] \underline{x}$
- Projective: (straight lines preserved)H: Homogenous 3x3 Matrix

$$x = \mathbf{H}\underline{x}$$
 $x' = \frac{h_{00}x + h_{01}y + h}{h_{00}x + h_{00}y + h}$

 $y' = \frac{h_{10}x + h_{21}y + h_{22}}{h_{20}x + h_{21}y + h_{22}}$

Fig. 2.4 from Szeliski, Computer Vision: Algorithms and Applications

METR 4202: Robotics

Transformations [3]

Forward Warp

 $\label{eq:procedure} \textbf{procedure} \ \textit{forwardWarp}(f, h, \textbf{out} \ g) :$

For every pixel x in f(x)

- 1. Compute the destination location x' = h(x).
- 2. Copy the pixel f(x) to g(x').

• Inverse Warp

procedure inverseWarp(f, h, out g):

For every pixel x' in g(x')

- 1. Compute the source location $x = \hat{h}(x')$
- 2. Resample f(x) at location x and copy to g(x')

Sec. 3.6 from Szeliski, Computer Vision: Algorithms and Applications

30 August 2013 - 39

Calibration

See: Camera Calibration Toolbox for Matlab

(http://www.vision.caltech.edu/bouguetj/calib_doc/)

- Intrinsic: Internal Parameters
 - **Focal length:** The focal length in pixels.
 - **Principal point:** The principal point
 - Skew coefficient:

The skew coefficient defining the angle between the x and y pixel axes.

- Distortions: The image distortion coefficients (radial and tangential distortions) (typically two quadratic functions)
- Extrinsics: Where the Camera (image plane) is placed:
 - **Rotations:** A set of 3x3 rotation matrices for each image
 - **Translations:** A set of 3x1 translation vectors for each image

Features

- Colour
- Corners
- Edges
- Lines
- Statistics on Edges: SIFT, SURF

Edge Detection

• Canny edge detector:

Fig: Ch. 10, Robotics Vision and Control

30 August 2013 - 43

Edge Detection

• Canny edge detector:

METR 4202: Robotics

Hough Transform

- Uses a voting mechanism
- Can be used for other lines and shapes (not just straight lines)

30 August 2013 - 45

Hough Transform: Voting Space

$$y = ax + b \qquad a = -\frac{1}{x}b + \frac{y}{x}$$

$$a = -\frac{1}{x}b + \frac{y}{x}$$

• Count the number of lines that can go through a point and move it from the "x-y" plane to the "a-b" plane

• There is only a one-"infinite" number (a line!) of solutions (not a two-"infinite" set -a plane)

METR 4202: Robotics

Hough Transform: Voting Space

• In practice, the polar form is often used

 $a = x\cos a + y\sin b$

• This avoids problems with lines that are nearly vertical

30 August 2013 - 47

Hough Transform: Algorithm

- 1. Quantize the parameter space appropriately.
- 2. Assume that each cell in the parameter space is an accumulator. Initialize all cells to zero.
- 3. For each point (x,y) in the (visual & range) image space, increment by 1 each of the accumulators that satisfy the equation.
- 4. Maxima in the accumulator array correspond to the parameters of model instances.

METR 4202: Robotics

