

Schedule				
Week	Date	Lecture (F: 9-10:30, 42-212)		
1	26-Jul	Introduction		
2	2-Aug	Representing Position & Orientation & State (Frames, Transformation Matrices & Affine Transformations)		
3	9-Aug	Robot Kinematics		
4	16-Aug	Robot Dynamics & Control		
5	23-Aug	Robot Trajectories & Motion		
6	30-Aug	Sensors & Measurement		
7	6-Sep	Perception / Computer Vision		
8	13-Sep	Localization and Navigation		
9	20-Sep	State-Space Modelling		
	27-Sep	State-Space Control		
10	4-Oct	Study break		
11	11-Oct	Motion Planning		
12	18-Oct	Vision-based control (+ Prof. P. Corke or Prof. M. Srinivasan)		
13	25-Oct	Applications in Industry (+ Prof. S. LaValle) & Course Review		
METR 4202: Robotics 30 August 2013				

Outline Newton-Euler Formulation Lagrange Formulation 	
Trajectory Generation & Control	-
Principles of Robot Motion	
METR 4202: Robotics	30 August 2013 4

Dynamics – Langrangian Mechanics [2]
L K P,
$$\dot{\theta}$$
: Generalized Velocities, M : Mass Matrix
 $\tau \int_{i=1}^{N} \frac{d}{dt} \frac{K}{\dot{\theta}} \frac{K}{\theta} \frac{P}{\theta}$
 $K = \frac{1}{2}\dot{\theta}^{T}M(\theta)\dot{\theta}$
 $\frac{d}{dt}\left(\frac{\partial K}{\partial \dot{\theta}}\right) = \frac{d}{dt}\left(\frac{\partial}{\partial \dot{\theta}}\left(\frac{1}{2}\dot{\theta}^{T}M(\theta)\dot{\theta}\right)\right) = \frac{d}{dt}\left(M\dot{\theta}\right) = M\ddot{\theta} + \dot{M}\dot{\theta}$
 $\rightarrow \frac{d}{dt}\left(\frac{\partial K}{\partial \dot{\theta}}\right) - \frac{\partial K}{\partial \theta} = [M\ddot{\theta} + \dot{M}\dot{\theta}] - [\frac{1}{2}\dot{\theta}^{T}M(\theta)\dot{\theta}] = M\ddot{\theta} + \left\{\dot{M}\dot{\theta} - \frac{1}{2}\begin{bmatrix}\dot{\theta}^{T}\frac{\partial M}{\partial \theta_{1}}\dot{\theta}\\i\\\dot{\theta}^{T}\frac{\partial M}{\partial \theta_{n}}\dot{\theta}\end{bmatrix}\right\}$
 $v(\theta,\dot{\theta}) = \underbrace{C(\theta)[\dot{\theta}^{2}]}_{\text{Centrifugal}} + \underbrace{B(\theta)[\dot{\theta}\dot{\theta}]}_{\text{Coriolis}}$
 $\tau M \ddot{\theta} v \theta, \dot{\theta} g \theta$
WETR 4202: Robotics

Generalized Coordinates
A significant feature of the Lagrangian Formulation is that any convenient coordinates can be used to derive the system.
Go from Joint → Generalized

Define p: dp Jdq
q q₁ ... q_n p p₁ ... p_n

Thus: the kinetic energy and gravity terms become

KE ½p^TH*p G* J¹^TG
where: H* J¹^THJ¹

METR 4202: Robotics	30 August 2013 28

