

Week	Date	Lecture (F: 9-10:30, 42-212)		
1	26-Jul	Introduction		
2	2-Aug	RepresentingPosition& Orientation& State(Frames,TransformationMatrices& AffineTransformations)		
3	9-Aug	Robot Kinematics		
4	16-Aug	Robot Dynamics & Control		
5	23-Aug	Sensors & Measurement		
6	30-Aug	Perception		
7	6-Sep	Computer Vision & Localization (SFM/SLAM)		
8	13-Sep	Localization and Navigation		
9	20-Sep	State-Space Modelling		
	27-Sep	State-Space Control		
10	4-Oct	Study break		
11	11-Oct	Motion Planning		
12	18-Oct	Vision-based control (+ Prof. P. Corke or + Prof. M Srinivasan)		
13	25-Oct	Applications in Industry (+ Prof. S. LaValle) & Course Review		

Group	Matrix	Distortion	Invariant properties
Projective 8 dof	$\left[\begin{array}{ccc} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{array}\right]$	\square	Concurrency, collinearity, order of contact: intersection (1 pt contact); tangency (2 pt con- tact); inflections (3 pt contact with line); tangent discontinuities and cusps. cross ratio (ratio of ratio of lengths).
Affine 6 dof	$\left[\begin{array}{rrrr} a_{11} & a_{12} & t_x \\ a_{21} & a_{22} & t_y \\ 0 & 0 & 1 \end{array}\right]$		Parallelism, ratio of areas, ratio of lengths on collinear or parallel lines (e.g. midpoints), linear combinations of vectors (e.g. centroids). The line at infinity, l_{∞} .
Similarity 4 dof	$\left[\begin{array}{ccc} sr_{11} & sr_{12} & t_x \\ sr_{21} & sr_{22} & t_y \\ 0 & 0 & 1 \end{array}\right]$		Ratio of lengths, angle. The circular points, I , J (see section 2.7.3).
Euclidean 3 dof	$\left[\begin{array}{ccc} r_{11} & r_{12} & t_x \\ r_{21} & r_{22} & t_y \\ 0 & 0 & 1 \end{array}\right]$		Length, area

Unit Quaternion $(\epsilon_0, \epsilon_1, \epsilon_2, \epsilon_3)$ [1] • Does not suffer from singularities $\epsilon \equiv \epsilon_0 + (\epsilon_1 \hat{i} + \epsilon_2 \hat{j} + \epsilon_3 \hat{k})$ • Uses a "4-number" to represent orientation ii = jj = kk = -1 ij = k, jk = i, ki = j, ji = -k, kj = -1, ik = -j• Product: $ab = (a_0b_0 - a_1b_1 - a_2b_2 + a_3b_3)$ $+ (a_0b_1 + a_1b_0 + a_2b_3 - a_3b_2)\hat{i}$ $+ (a_0b_2 + a_2b_0 + a_3b_1 + a_1b_3)\hat{j}$ $+ (a_0b_3 + a_3b_0 + a_1b_2 - a_2b_1)\hat{k}$ • Conjugate: $\tilde{\epsilon} \equiv \epsilon_0 - \epsilon_1\hat{i} - \epsilon_2\hat{j} - \epsilon_3\hat{k}$ $\epsilon\tilde{\epsilon} = \tilde{\epsilon}\epsilon = \epsilon_0^2 + \epsilon_1^2 + \epsilon_2^2 + \epsilon_3^2$

Inverse Kinematics

- Inverse Kinematics is the problem of finding the joint parameters given only the values of the homogeneous transforms which model the mechanism (i.e., the pose of the end effector)
- Solves the problem of where to drive the joints in order to get the hand of an arm or the foot of a leg in the right place

9 August 2013 - 2

- In general, this involves the solution of a set of simultaneous, non-linear equations
- Hard for serial mechanisms, easy for parallel

METR 4202: Robotics

Multiple Solutions
There will often be multiple solutions for a particular inverse kinematic analysis
Consider the three link manipulator shown. Given a particular end effector pose, two solutions are possible
The choice of solution is a function of proximity to the current pose, limits on the joint angles and possible obstructions in the workspace

Summary

- Many ways to view a rotation
 - Rotation matrix
 - Euler angles
 - Quaternions
 - Direction Cosines
 - Screw Vectors

Homogenous transformations

- Based on homogeneous coordinates

METR 4202: Robotics

9 August 2013 - 50

