

Week	Date	Lecture (F: 9-10:30, 42-212)					
1	26-Jul	Introduction					
2	2-Aug	RepresentingPosition& Orientation& State(Frames, Transformation Matrices & Affine Transformations)					
3	9-Aug	Robot Kinematics					
4	16-Aug	Robot Dynamics & Control					
5	23-Aug	Robot Trajectories & Motion					
6	30-Aug	Sensors & Measurement					
7	6-Sep	Perception / Computer Vision					
8	13-Sep	Localization and Navigation					
9	20-Sep	State-Space Modelling					
10	27-Sep	State-Space Control					
	4-Oct	Study break					
11	11-Oct	Motion Planning					
12	18-Oct	Motion Planning & Control					
13	25-Oct	Applications in Industry & Course Review					

And now Presenting ... Latzi Marian!

METR 4202: Robotics

METR 4202: Robotics

25 October 2013

And now Presenting ... Surya Singh (finally)!

METR 4202: Robotics

METR 4202: Robotics

25 October 2013 18

Group	Matrix	Distortion	Invariant properties
Projective 8 dof	$\begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix}$		Concurrency, collinearity, order of contact intersection (1 pt contact); tangency (2 pt con- tact); inflections (3 pt contact with line); tangent discontinuities and cusps. cross ratio (ratio of ratio of lengths)
Affine 6 dof	$\left[\begin{array}{ccc} a_{11} & a_{12} & t_x \\ a_{21} & a_{22} & t_y \\ 0 & 0 & 1 \end{array}\right]$		Parallelism, ratio of areas, ratio of lengths or collinear or parallel lines (e.g. midpoints), lin ear combinations of vectors (e.g. centroids). The line at infinity, l_{∞} .
Similarity 4 dof	$\left[\begin{array}{ccc} sr_{11} & sr_{12} & t_x \\ sr_{21} & sr_{22} & t_y \\ 0 & 0 & 1 \end{array}\right]$		Ratio of lengths, angle. The circular points, I, J (see section 2.7.3).
Euclidean 3 dof			Length, area

Dynamics – Langrangian Mechanics [2]

$$L = K - P, \dot{\theta}: \text{Generalized Velocities, } M : \text{Mass Matrix}$$

$$\tau = \sum_{i=1}^{N} \tau_i = \frac{d}{dt} \left(\frac{\partial K}{\partial \dot{\theta}} \right) - \frac{\partial K}{\partial \theta} + \frac{\partial P}{\partial \theta}$$

$$K = \frac{1}{2} \dot{\theta}^T M(\theta) \dot{\theta}$$

$$\frac{d}{dt} \left(\frac{\partial K}{\partial \dot{\theta}} \right) = \frac{d}{dt} \left(\frac{\partial}{\partial \dot{\theta}} \left(\frac{1}{2} \dot{\theta}^T M(\theta) \dot{\theta} \right) \right) = \frac{d}{dt} \left(M \dot{\theta} \right) = M \ddot{\theta} + \dot{M} \dot{\theta}$$

$$\rightarrow \frac{d}{dt} \left(\frac{\partial K}{\partial \dot{\theta}} \right) - \frac{\partial K}{\partial \theta} = \left[M \ddot{\theta} + \dot{M} \dot{\theta} \right] - \left[\frac{1}{2} \dot{\theta}^T M(\theta) \dot{\theta} \right] = M \ddot{\theta} + \left\{ \dot{M} \dot{\theta} - \frac{1}{2} \begin{bmatrix} \dot{\theta}^T \frac{\partial M}{\partial \theta_1} \dot{\theta} \\ \vdots \\ \dot{\theta}^T \frac{\partial M}{\partial \theta_n} \dot{\theta} \end{bmatrix} \right\}$$

$$v(\theta, \dot{\theta}) = \underbrace{C(\theta)}_{\text{Centrifugal}} \underbrace{F(\theta)}_{\text{Coriolis}} = M(\theta) \dot{\theta} + v(\theta, \dot{\theta}) + g(\theta)$$

$$\underbrace{\text{Werr 4202: Rootes}} \qquad \text{Expression of the second secon$$

Dynamics – Langrangian Mechanics [3]
• The Mass Matrix: Determining via the Jacobian!

$$K = \sum_{i=1}^{N} K_{i}$$

$$K_{i} = \frac{1}{2} \left(m_{i} v_{C_{i}}^{T} v_{C_{i}} + \omega_{i}^{T} I_{C_{i}} \omega_{i} \right)$$

$$v_{C_{i}} = J_{v_{i}} \dot{\theta} \quad J_{v_{i}} = \begin{bmatrix} \frac{\partial \mathbf{p}_{C_{1}}}{\partial \theta_{1}} \cdots \frac{\partial \mathbf{p}_{C_{i}}}{\partial \theta_{i}} & \underbrace{\mathbf{0}}_{i+1} \cdots & \underbrace{\mathbf{0}}_{n} \end{bmatrix}$$

$$\omega_{i} = J_{\omega_{i}} \dot{\theta} \quad J_{\omega_{i}} = \begin{bmatrix} \bar{\varepsilon}_{1} Z_{1} \cdots \bar{\varepsilon}_{i} Z_{i} & \underbrace{\mathbf{0}}_{i+1} \cdots & \underbrace{\mathbf{0}}_{n} \end{bmatrix}$$

$$\therefore M = \sum_{i=1}^{N} \left(m_{i} J_{v_{i}}^{T} J_{v_{i}} + J_{\omega_{i}}^{T} I_{C_{i}} J_{\omega_{i}} \right)$$
! M is symmetric, positive definite $\therefore m_{ij} = m_{ji}, \dot{\mathbf{0}}^{T} M \dot{\mathbf{0}} > 0$

Generalized Coordinates
A significant feature of the Lagrangian Formulation is that any convenient coordinates can be used to derive the system.
Go from Joint → Generalized

Define p: dp = Jdq
q = [q₁ ... q_n] → p = [p₁ ... p_n]

Thus: the kinetic energy and gravity terms become

KE = ½ p^TH*p G* = (J⁻¹)^T G
where: H* = (J⁻¹)^T HJ⁻¹

Linear system equations

• We can represent the dynamic relationship between the states with a linear system:

