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Schedule

Week Date Lecture (F: 9-10:30, 42-212)
1 26-Jul Introduction

2 2-Aug
Representing Position & Orientation & State
(Frames, Transformation Matrices & Affine Transformations)

3 9-Aug Robot Kinematics
4 16-Aug Robot Dynamics & Control
5 23-Aug Robot Trajectories & Motion
6 30-Aug Sensors & Measurement
7 6-Sep Perception / Computer Vision
8 13-Sep Localization and Navigation
9 20-Sep State-Space Modelling
10 27-Sep State-Space Control

4-Oct Study break

11 11-Oct Motion Planning
12 18-Oct Vision-based control (+ Prof. P. Corke or Prof. M. Srinivasan)
13 25-Oct Applications in Industry (+ Prof. S. LaValle) & Course Review
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• Lab 3:
– Working on it!

– Due: October 24 (!!), “Free Extension” to October 31.

• Take Home “Quiz”:
• Working on it!

• Designing it so that you can do it in less than 24 hours 
if you know the question

• Via Platypus: Scanning of Handwritten solutions okay

• Cool Robotics Share Site 
 http://metr4202.tumblr.com/

Announcements:  We’re Working On It!

!

Cool 
Robotics 

Video 
Share
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From Last Week:
Command Shaping
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Robust Control:
Command Shaping for Vibration Reduction
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Command Shaping

Original velocity profile

Input shaper

Command-shaped velocity profile
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Command Shaping
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Command Shaping

• Zero Vibration (ZV) 

• Zero Vibration and Derivative (ZVD) 


























2
0

11

1

di

i

T
K

K

K
t

A




















21 



eK




























d
di

i

T
T

K

K

K

K

K
t

A

2
0

)1()1(

2

)1(

1
2

2

22

11 October 2013METR 4202: Robotics 8



5

Command Shaping:
Zero Vibration and Derivative 

2,1i

Example: For Gryphon:
  At ρ0=1.5 [m] At ρ1=3.0 [m] 

ω 2.32 1.81 
Axis 1 

ζ 0 0 

ω 3.3 3.0 
Axis 2 & 3 

ζ 0 0 
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Example II:
Estimation
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Along multiple dimensions

11 October 2013METR 4202: Robotics 11

State Space

• We collect our set of uncertain variables into a vector …

x = [x1, x2,…, xN]T

• The set of values that x might take on is termed the state 
space

• There is a single true value for x, 
but it is unknown 

11 October 2013METR 4202: Robotics 12
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State Space Dynamics

11 October 2013METR 4202: Robotics 13

Measured versus True

• Measurement errors are inevitable

• So, add Noise to State...
– State Dynamics becomes:

• Can represent this as a “Normal” Distribution

11 October 2013METR 4202: Robotics 14
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Recovering The Truth

• Numerous methods

• Termed “Estimation”  because we are trying to estimate 
the truth from the signal

• A strategy discovered by Gauss

• Least Squares in Matrix Representation

11 October 2013METR 4202: Robotics 15

Recovering the Truth: Terminology
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General Problem…

11 October 2013METR 4202: Robotics 17

Duals and Dual Terminology
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Estimation Process in Pictures

F +k w

H
k

xk–1

xk

z +k v

xk

PkPk–1

xk–1

noise

w~Qk

v~R =k �(0,r)

System:
(unknown)

Estimate:

Measured:
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Kalman Filter Process
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KF Process in Equations

11 October 2013METR 4202: Robotics 21

KF Considerations

11 October 2013METR 4202: Robotics 22
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Ex: Kinematic KF: Tracking

• Consider a System with Constant Acceleration

11 October 2013METR 4202: Robotics 23

In Summary

• KF:
– The true state (x) is separate from the measured (z)

– Lets you combine prior controls knowledge with 
measurements to filter signals and find the truth

– It regulates the covariance (P)
• As P is the scatter between z and x

• So, if P  0, then z x (measurements  truth)

• EKF:  
– Takes a Taylor series approximation to get a local “F” (and 

“G” and “H”)

11 October 2013METR 4202: Robotics 24
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Motion 
PLANNING

11 October 2013METR 4202: Robotics 25

Trajectory Generation & Planning 

METR 4202: Robotics 11 October 2013 26
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Trajectory Generation 

• The goal is to get from an initial position {i} to a final 
position {f} via a path points {p}

METR 4202: Robotics 11 October 2013 27

{i}

{f}

{p}

Joint Space

Consider only the joint positions
as a function of time

• + Since we control the joints, this is 
more direct

• -- If we want to follow a particular 
trajectory, not easy

– at best lots of intermediate points

– No guarantee that you can solve 
the Inverse Kinematics for all 
path points

METR 4202: Robotics 11 October 2013 28
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Cartesian Workspace

Consider the Cartesian positions
as a function of time

• + Can track shapes exactly 

• -- We need to solve the inverse 
kinematics and dynamics

METR 4202: Robotics 11 October 2013 29

Time

x

Polynomial Trajectories

• Straight line Trajectories

• Simpler

• Polynomial Trajectories

• Parabolic blends are 
smoother

• Use “pseudo via points”

METR 4202: Robotics 11 October 2013 30
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Problem

free space

s

g

free path
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Slide from Latombe, CS326A

Problem

semi-free path

11 October 2013METR 4202: Robotics 32

Slide from Latombe, CS326A
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Motion-Planning Framework

Continuous representation

Discretization

Graph searching
(blind, best-first, A*)

11 October 2013METR 4202: Robotics 33

Slide from Latombe, CS326A

Path-Planning Approaches

• Roadmap
Represent the connectivity of the free space by a network 
of 1-D curves

• Cell decomposition
Decompose the free space into simple cells and represent 
the connectivity of the free space by the adjacency graph 
of these cells

• Potential field
Define a function over the free space that has a global 
minimum at the goal configuration and follow its steepest 
descent

11 October 2013METR 4202: Robotics 34
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I. Rotational Sweep

11 October 2013METR 4202: Robotics 35

Slide from Latombe, CS326A

Rotational Sweep
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Slide from Latombe, CS326A
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Rotational Sweep
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Slide from Latombe, CS326A

Rotational Sweep
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Slide from Latombe, CS326A
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Rotational Sweep
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Slide from Latombe, CS326A

II. Cell-Decomposition Methods

Two classes of methods:

• Exact cell decomposition
– The free space F is represented by a collection of non-

overlapping cells whose union is exactly F

– Example: trapezoidal decomposition

• Approximate cell decomposition
– F is represented by a collection of 

non-overlapping cells whose union is contained in F
Examples: quadtree, octree, 2n-tree

11 October 2013METR 4202: Robotics 40
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Trapezoidal decomposition

11 October 2013METR 4202: Robotics 41

Slide from Latombe, CS326A

Planar sweep  O(n log n) time, O(n) space

Trapezoidal decomposition

11 October 2013METR 4202: Robotics 42
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Trapezoidal decomposition
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Slide from Latombe, CS326A

Trapezoidal decomposition
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Slide from Latombe, CS326A
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Trapezoidal decomposition
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Slide from Latombe, CS326A

III. Roadmap Methods

• Visibility graph

• Voronoi diagram 

• Silhouette
First complete general method that applies to spaces of 
any dimension and is singly exponential in # of 
dimensions [Canny, 87]

• Probabilistic roadmaps  (PRMS) 
and Rapidly-exploring Randomized Trees (RRTs)

11 October 2013METR 4202: Robotics 46
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Roadmap Methods

• Visibility graph
Introduced in the Shakey project at SRI in the late 60s. 
Can produce shortest paths in 2-D configuration spaces

g

s
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Slide from Latombe, CS326A

Roadmap Methods

• Voronoi diagram 
Introduced by 
Computational 
Geometry researchers. 
Generate paths that 
maximizes clearance. 

O(n log n) time
O(n) space

11 October 2013METR 4202: Robotics 48

Slide from Latombe, CS326A
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II.Visibility Graph

tangent segments
 Eliminate concave obstacle vertices

can’t be shortest path

11 October 2013METR 4202: Robotics 49

Slide from Latombe, CS326A

Generalized (Reduced) -- Visibility Graph

tangency point

11 October 2013METR 4202: Robotics 50

Slide from Latombe, CS326A
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Three-Dimensional Space

Computing the shortest collision-free path in a 
polyhedral space is NP-hard

Shortest path passes 
through none of the 
vertices

locally shortest 
path homotopic 
to globally shortest 
path

11 October 2013METR 4202: Robotics 51

Slide from Latombe, CS326A

Sketch of Grid Algorithm (with best-first search)

• Place regular grid G over space

• Search G using best-first search algorithm with potential 
as heuristic function

11 October 2013METR 4202: Robotics 52

Slide from Latombe, CS326A
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Simple Algorithm (for Visibility Graphs)

• Install all obstacles vertices in VG, plus the start and goal 
positions

• For every pair of nodes u, v in VG

If segment(u,v) is an obstacle edge then

insert (u,v) into VG

else

for every obstacle edge e

if segment(u,v) intersects e

then go up to segment

insert (u,v) into VG

• Search VG using A*
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Slide based on Latombe, CS326A

IV. Potential Field Methods

• Approach initially proposed for 
real-time collision avoidance [Khatib, 86]

Goal

Goal Force

O
bs

ta
cl

e 
F

or
ceMotion

Robot
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Attractive and Repulsive fields
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Slide from Latombe, CS326A

Local-Minimum Issue

• Perform best-first search (possibility of 
combining with approximate cell decomposition)

• Alternate descents and random walks
• Use local-minimum-free potential (navigation function)

11 October 2013METR 4202: Robotics 56

Slide from Latombe, CS326A
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Configuration Space

• A robot configuration is a specification of the positions of all robot 
points relative to a fixed coordinate system

• Usually a configuration is expressed as a “vector” of 
position/orientation parameters

METR 4202: Robotics 11 October 2013 57

Slide from Latombe, CS326A

Motion Planning in C-Space

METR 4202: Robotics 11 October 2013 58

q=(q1,…,qn)

q1
q2

q3

qn

Slide from Latombe, CS326A
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Configuration Space of a Robot

• Space of all its possible configurations

• But the topology of this space is usually not that of a 
Cartesian space

C = S1 x S1

11 October 2013METR 4202: Robotics 59

Slide from Latombe, CS326A

Disc Robot in 2-D Workspace
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Slide from Latombe, CS326A
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Rigid Robot Translating and Rotating in 2-D
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Slide from Latombe, CS326A

Geometric Planning Methods

• Several Geometric 
Methods:
– Vertical (Trapezoidal) 

Cell Decomposition

– Roadmap Methods
• Cell (Triangular) 

Decomposition

• Visibility Graphs

• Veroni Graphs

METR 4202: Robotics 11 October 2013 62

Start

Goal

Artwork from LaValle, Ch. 6
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Sample-Based Motion Planning

• PRMs • RRTs

METR 4202: Robotics 11 October 2013 63

Artwork based on LaValle, Ch. 5

Rapidly Exploring Random Trees (RRT)

q(m)

q(
m

/s
)

Under differential constraints

xinit 
s(m)

r(
m

)

xgoalxrand 
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Sampling and the “Bug Trap” Problem 

METR 4202: Robotics 11 October 2013 65

Artwork based on LaValle, Ch. 5

Multiple Points & Sequencing

• Sequencing
– Determining the “best” order to 

go in 

 Travelling Salesman Problem

A salesman has to visit each city on a given list exactly once.
In doing this, he starts from his home city and in the end he 
has to return to his home city. It is plausible for him to select 
the order in which he visits the cities so that the total of the 
distances travelled in his tour is as small as possible. 

METR 4202: Robotics 11 October 2013 66

Artwork based on LaValle, Ch. 6

Start

Goal

Goal

Goal

Goal

Goal
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Travelling Salesman Problem

METR 4202: Robotics 11 October 2013 67

Artwork based on LaValle, Ch. 6

Start

Goal

Goal

Goal

Goal

Goal

• Given a distance 
matrix C=(cij)

• Minimize:

• Note that this problem is NP-Hard 

 BUT, Special Cases are Well-Solvable!

Travelling Salesman Problem [2]

• This problem is NP-Hard 

 BUT, 
Special Cases are 
Well-Solvable!

For the Euclidean case 
(where the points are on the 2D Euclidean plane) :

• The shortest TSP tour does not intersect itself, and thus 
geometry makes the problem somewhat easier.

• If all cities lie on the boundary of a convex polygon, the 
optimal tour is a cyclic walk along the boundary of the 
polygon (in clockwise or counterclockwise direction).

The k-line TSP

• The a special case where the cities lie on k parallel (or 
almost parallel) lines in the Euclidean plane.

• EG:  Fabrication of printed circuit boards

• Solvable in O(n3) time by Dynamic Programming 
(Rote's algorithm)

The necklace TSP

• The special Euclidean TSP case 
where there exist n circles around 
the n cities such that every cycle 
intersects exactly two adjacent 
circles

METR 4202: Robotics 11 October 2013 68
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Motion 
PLANNING
& Uncertainty
(Slides C/O Hanna Kurniawati)
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Deterministic motion planning vs
motion planning under uncertainty

• Deterministic motion 
planning
– Find a valid path between 

two configurations in order 
to accomplish a task, given:

– No control error.

– No sensing.

– Know the operating 
environment perfectly.

• Motion planning under 
uncertainty (today)
– Find a motion strategy to 

accomplish a task, where 
there's a combination of:

– Control error.

– Sensing error.

– Partially / unknown 
operating environment.

METR 4202: Robotics 11 October 2013 70
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Today: wonderful world of “perfect” robotics

• In particular: Motion planning under uncertainty.

 What is it.

How difficult to solve it.

 Several approaches:

METR 4202: Robotics 11 October 2013 71

Conservative ReactiveProbabilistic

Problem hardness

• Finding a motion strategy for: 
– A point robot operating in 3D environment, where obstacles are 

planar walls.

– To move from a known initial configuration to a point in a 
given goal region.

– Control error: Bounded velocity error.

– Sensing error: Bounded localization error.

is PSPACE-hard [Natarajan'86].

is NEXPTIME-hard [Cany & Reif'87].

METR 4202: Robotics 11 October 2013 72
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A little bit on computational complexity 1/3

• Algorithms are not made to be used only once & are not
made to be used for only one particular problem.

• How long does it take for the algorithm to find the 
solution when the input size increases ?
– In particular, is it polynomial or exponential ?

METR 4202: Robotics 11 October 2013 73

A little bit on computational complexity 2/3

METR 4202: Robotics 11 October 2013 74

Machine

Today’s computer (Deterministic) Turing machine

Non-Deterministic Turing machine
It can generate multiple possible 
program executions at once.
Same capability as Turing machine, 
but can get things done faster.
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A little bit on computational complexity 3/3

• P: Can be solved in polynomial time in Turing machine.

• NP: Can be solved in polynomial time on a                 non-
deterministic Turing machine. 

 Verifiable in polynomial time in today's computer.

• PSPACE: Can be solved using polynomial space in Turing 
machine.

METR 4202: Robotics 11 October 2013 75

A little bit on computational complexity 3/3

• P: Can be solved in polynomial time in Turing machine.

• NP: Can be solved in polynomial time on a                 non-
deterministic Turing machine. 

 Verifiable in polynomial time in today's computer.

• PSPACE: Can be solved using polynomial space in Turing 
machine.

• NEXPTIME: Can be solved in exponential time on a non-
deterministic Turing machine.
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A little bit on computational complexity 3/3

• P: Can be solved in polynomial time in Turing machine.

• NP: Can be solved in polynomial time on a                 non-
deterministic Turing machine. 

 Verifiable in polynomial time in today's computer.

• PSPACE: Can be solved using polynomial space in Turing 
machine.

• NEXPTIME: Can be solved in exponential time on a non-
deterministic Turing machine.
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Want to know more ?
Introduction to the Theory of Computation 
by Michael Sipser.

Problem hardness

• Finding a motion strategy for: 
– A point robot operating in 3D environment, where obstacles are 

planar walls.

– To move from a known initial configuration to a point in a 
given goal region.

– Control error: Bounded velocity error.

– Sensing error: Bounded localization error.

is PSPACE-hard [Natarajan'86].

is NEXPTIME-hard [Cany & Reif'87].

input size: number of planar walls.

METR 4202: Robotics 11 October 2013 78

Ok, it’s hard… So, what should we do ?
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But Intel Giveth!

• “Moore’s Law” is exponential (at best!)

• These problems ∝ factorial!

• Some Numbers: (From: D. MacKay, Information Theory, Inference, and Learning Algorithms)
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Today: wonderful world of “perfect” robotics

• In particular: Motion planning under uncertainty.

 What is it.

 How difficult to solve it.

 Several approaches: 
Methods: Algorithms vs heuristics

METR 4202: Robotics 11 October 2013 80

Conservative ReactiveProbabilistic
Overestimate risk. Underestimate 

difficulty of 
achieving goal.

Quantify uncertainty, 
to tradeoff risk w. 
achieving goal.
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Probability review 1/4: Probabilistic Modeling

• View: 
– Experiments with random outcome.

– Quantifiable properties of the outcome. 

• Three components:
– Sample space: Set of all possible outcomes.

– Events: Subsets of sample space.

– Probability: Quantify how likely an event occurs.
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Probability review 2/4: Probability

• Probability: A function that maps events to real numbers 
satisfying these axioms:
1. Non-negativity:

2. Normalization: 

3. Additivity of finite / countably infinite events. 

P(E) 0, where E is an even
P(S) 1, where S is the sample space.



P U
i  1

 / n

E i

  
  
    

  
   P E i  

i  1

 / n

 ,  

where E i are disjoint / mutually exclusive,  i :  natural number.
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Probability review 3/4: Random Variables

• Interest is on numerical values associated w. samples, e.g.:
– Sample 50 students enrolled in METR4202, what's the major of 

most of the students. 

– Roll a fair dice, get $5 if the outcome is even, & loose $5 if the 
outcome is odd.

• Random variable X is a function                          .
– Num: countable set (e.g., integer)  discrete random variable.

– Num: uncountable set (e.g., real)  continuous random variable.

X : S Num
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Probability review 4/4: Characterizing Random Variables

• Cumulative distribution function (cdf)

• Discrete: Probability mass function (pmf)

• Continuous: Probability density function/probability 
distribution function (pdf)

f X x   
dFX x 

dx
; P a  X  b   f X x  dx

a

b

 

fX x P X x

FX x   P X  x   P s X(s)  x,s  S
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Today: wonderful world of “perfect” robotics

• In particular: Motion planning under uncertainty.

 What it is.

 How difficult to solve it.

 Several approaches:

METR 4202: Robotics 11 October 2013 85

Conservative ReactiveProbabilistic
POMDP
Probability review.
• POMDP.
• POMDP solvers.

Cool Robotics Share
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