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Schedule
Week Date Lecture (F: 9-10:30, 42-212)
1 26-Jul Introduction
) 2-Aug Representing Pos?tion .& Orientation &. State
Frames, Transformation Matrices & Affine Transformations)
3 9-Aug Robot Kinematics
4 16-Aug Robot Dynamics & Control
5 23-Aug Robot Trajectories & Motion
6 30-Aug Sensors & Measurement
7 6-Sep Perception / Computer Vision
8 13-Sep Localization and Navigation
9 20-Sep State-Space Modelling
10 | 27-Sep [State-Space Control
4-Oct Study break
11 11-Oct Motion Planning
12 18-Oct Vision-based control (+ Prof. P. Corke or Prof. M. Srinivasan)
13 25-Oct IApplications in Industry (+ Prof. S. LaValle) & Course Review
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Announcements: We’re Working On It!

* Grades: i ' E
— I am still working on it h

— DI’ve read the course profile 1100x ©

* Lab 3:
— Working on it!

* Cool Robotics Share Site
— Jared is making a “blog”. URL Soon!

Cool

— He is still working on it !! © Robotics |
Video
Share
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Welcome to

State-Space!

(Why the big type?)
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Ipocreiimmii CriyTHHK-1

State-Space!

roCy1apCTBEHHbIN KOHTPOJb IPOCTPAHCTBA
* It’s Russian for Control

* Dynamic systems are described as differential equations (as
compared to transfer functions)

+ Stability is approached via the theory of Liapunov instead of
frequency-domain methods (Bode and Nyquist)

* Optimisation of System Performance via calculus of variations
(Pontryagin) (as compared to Wiener-Hopf methods)
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State-Space Control

X = Fx

(That can not be all of it? There has to be more to it than this...)
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State-Space Control

x = Fx + Gu

Benefits:

» Characterises the process by systems of coupled, first-order
differential equations

* More general mathematical model
— MIMO, time-varying, nonlinear

* Mathematically esoteric (who needs practical solutions)

* Yet, well suited for digital computer implementation
— That is: based on vectors/matrices (think LAPACK = MATLAB)
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Difference Equations & Feedback

Input H _h) :> 5} % k H y

* Start with the Open-Loop:
y = Hu

E

* Close the loop:

u=ke=k(-y)2>y=Hk® -y)]
_ Hk
"~ 1+Hk

* All easy! (yesa!)
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Difference Equations & Feedback

Input H _h) :> 5} % k H y

* Now add delay (image the plant is a replica with a delay 1)
y(t) =u(t—1)

E

* Close the loop:
u(t—1)=ke(t—1)=k[yt—-1) -yt —-1)]
Qy®) =k [yt —1) -yt —1)]

* Notice we have a difference equation!
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Difference Equations & Feedback

Input H _% :> 5; % k H y

* What happens with a single delay and a unit step?
u(t) = k for 0<t<rt
y(t) = u(t — 1) for <t<2t
* Then with feedback we get:
u(t) =k(1—k) =k —k?
y®) =k —k*+k3+-+ (1) k!
« Ifk<I: then:

E

Slim y(t) = ——

1+k
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Controllability




Controllability matrix

 Ifyou can write it in CCF, then the system equations must
be linearly independent.

* Transformation by any nonsingular matrix preserves the
controllability of the system.

* Thus, a nonsingular controllability matrix means X can be
driven to any value.

Q@? METR 4202: Robotics 27 September 2013 13

State evolution

* Consider the system matrix relation:
x =Fx+ Gu
y=Hx+Ju

The time solution of this system is:
t

x(t) = eFt=to) x(to) +f = eF= Gu(r)dr
to

If you didn’t know, the matrix exponential is:

1 1
eKt = [+ Kt +§K2t2 +§K31:3 +

Q@? METR 4202: Robotics 27 September 2013 14




Stability

* We can solve for the natural response
to initial conditions x:

x(t) = ePitx,
~ x(t) = p;ePitx, = FePitx,

Clearly, a system will be stable provided
eig(F) < 0
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Characteristic polynomial

* From this, we can see Fx, = p;x,
or, (p;I =F)xo =0
which is true only when det(p;1 — F}xo =0

Aka. the characteristic equation!

* We can reconstruct the CP in S by writing:
det(SI — F)xO =0
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Great, so how about control?

* Given x = Fx + Gu, if we know F and G, we can design a
controller u = —Kx such that
eig(F—GK) <0

» In fact, if we have full measurement and control of the states of x,
we can position the poles of the system in arbitrary locations!

(Of course, that never happens in reality.)
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Example: PID control
» Consider a system parameterised by three states:
- X1,X2,X3
— where x, = x; and x3 = X,
1
x= 1 x — Ku

—2
y=1[0 1 0]x+0u

X,1s the output state of the system;
x41s the value of the integral;
x5 1s the velocity.
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* We can choose K to move the eigenvalues of the system
as desired:

_2 - K3
All of these eigenvalues must be positive.

It’s straightforward to see how adding derivative gain
K3 can stabilise the system.
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Just scratching the surface

» There is a lot of stuff to state-space control

* One lecture (or even two) can’t possibly cover it all in
depth

Go play with Matlab and check it out!
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Discretisation FTW!

* We can use the time-domain representation to produce
difference equations!
kT+T

x(kT +T) = eFT x(kT) + f eFUT+T-D) Gy (1) dt
kT

Notice u(7) is not based on a discrete ZOH input, but rather
an integrated time-series.

We can structure this by using the form:
u(t) = u(kT), kT <t <kT+T
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Discretisation FTW!
e Put this in the form of a new variable:
n=kT+T—-1
Then:

KT+T
x(kT +T) = eFTx(kT) + (j eF"dn> Gu(kT)
k

T

Let’s rename @ = efT and T = (f:TTJrT eF"dr)) G
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Discrete state matrices

So,
x(k+1) = dx(k) +Tu(k)

y(k) = Hx(k) + Ju(k)

Again, x(k + 1) is shorthand for x(kT + T)

Note that we can also write ® as:

®=1+FT¥

where
FT F?T?
p=1+ TR
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Simplifying calculation

 We can also use W to calculate T

— Note that:
© FkTkK
"= i

=YTG
W itself can be evaluated with the series:

FT (. FT FT | FT
leI+—{I+—I+--~ (I+—)]}
2 3 n—1 n
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State-space z-transform

We can apply the z-transform to our system:
(zI - ®)X(z) =TU (k)
Y(z) = HX(2)

which yields the transfer function:
Y(2) _1
E—G(Z)—H(ZI—(D) I
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State-space control design

» Design for discrete state-space systems is just like

the continuous case.
— Apply linear state-variable feedback:
u=—-Kx
such that det(zl — ® + I'K) = a.(2)

where a.(z) is the desired control characteristic equation

Predictably, this requires the system controllability matrix
C=[T ®r &?r .- &"1r] to be full-rank.
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Example:

Command Shaping

Command Shaping

0.6
Ay

0.4

=
=]
=
= 0
\
\
1
2 \
-0. ]
\
\
\
0.4
0 0.5

==-A, Response

A, Response

—e—Total Response

" i\ 7 ';'\\ 7
A BN ’J' ! i
S
3 N
-\
1 1.5 2 2.5 3
Time

@ METR 4202: Robotics

27 September 2013 28

14



Command Shaping

Ay e

A2 / )
* - - From A
e From Ag

Initial Command Input Shaper Shaped Command

» Zero Vibration (ZV)
1 K
{Ai}: 1+K 1+K [ tr
t. T4 T2
i 0 2 B 1-¢
> K=e

» Zero Vibration and Derivative (ZVD)

1 2K K?
{‘\}_ (1+K). (1+K)2 (1+K)?
L 0 T T
2

|

@ METR 4202: Robotics

27 September 2013 29

Example II:

Estimation

15



Along multiple dimensions
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State Space

* We collect our set of uncertain variables into a vector ...

X = [Xy, Xg5e-es X1t

» The set of values that x might take on is termed the state
space

 There is a single true value for x,
but it is unknown
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State Space Dynamics

x = Ax + Bu
y = Cx + Du

H(s)=C(sI — A 'B

Q? METR 4202: Robotics

27 September 2013 33

Measured versus True

» Measurement errors are inevitable

* So, add Noise to State...
— State Dynamics becomes:

x=Ax+Buitw
y=Cx+Du+vw

» Can represent this as a “Normal” Distribution

) 1 (z — )’
N(zyp,0) = (V2n) Uexp T 952
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Recovering The Truth

* Numerous methods

* Termed “Estimation” because we are trying to estimate
the truth from the signal

+ A strategy discovered by Gauss
» Least Squares in Matrix Representation

HEE N
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Recovering the Truth: Terminology

x=Fx+Guit+w

z=Hx-+v

x : the stale vector
X o the state of x at time A based on data taken up o tme B
% @ estimaie of the true state vector
F : system dynamics mairix in continuous time fequivalent to A in Eq. 1)
G o osystem control matnx relating determinisiic input, u, o the state (equivalent to B in Eg. 1)
H : measurement matrix in continuous time (equivalent 1o C in Eq. 2)
F, : system model in discrete time at §{ =,
H; : measurement model in discrete time al = §;
Py @ estimate covartance in discrete time at £ = #;
w @ process uncertainty (noise) vector (of type N0, s))
Q : process noise matrix, Q = F |u r.-‘]
Q, : 0 in discrete time al § = 1
v i omeaswrement noise vectors (of tvpe A0, a))
T:. m discrete time o £ = §

R, : the measuremen vanance matrx, B = F |ve
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General Problem...

True state

—_— ( Xy | —m

F

! Observed state

! (Measurement)

v
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Duals and Dual Terminology

Estimation Control
Model: % = Fx (discrete: x = Fyx) — [ x=Ax, A=F!
Regulates: P (covariance) +— | M (performance matrix)
Minimized function: Q (or GQGT) - |V
Optimal Gain: K — | G

Completeness law:

Observability

Controllability
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Estimation Process in Pictures

System:

(unknown)
v~R,=N(0,r)
Measured:
k,
___________________________________________ H—
w~Qk i A
. 2 X,
Estimate: 1 P tw
P, P,
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Kalman Filter Process

Initial state (x)
& covariance (P) Measurement (z)

Compute optimal observer
Project state & gain ("Kalman gain”)

covariance forward then update state
and covariance estimates

N~
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KF Process in Equations

Prediction: _‘;(Hk_] = F.l:—lf(}c—ﬂk—l-. (state prediction)

Pk|k—1 = Qk_l + Fk—lpk_l\k_]_FTk—l- (covariance prediction)

Kalman Gain: Kk = Pk|k,1HT[HPHk,1HT -+ Rk:il.
Update: Pk|k = [I — KkH]Pk\kfl:

XHFC = Xk|k71 + Kk (Zk — H}A(;c‘kfl) (state update)

(covariance update)
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KF Considerations

Rije—1 = Fr1 Xp—1p—1 + Gr—1 wp—1
N—— N~ N N —
nxl nXn nxj jixl1

T
Pipr—1= Q-1 +Fe 1Py Fle
R s

nxn nxn

K. = Pup HT [HP,  HT + Ry
k Elk—1 [ Elg—1H + k]

nxm nxm

mxm

Pup = [1 - KpH]Pyi o
X = Xppp—1 + Ki((ze — H X1 — HGrug—1)

mx1 Mmxn
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Ex: Kinematic KF: Tracking
* Consider a System with Constant Acceleration

i=—g

y=gt+p
2
y=po+nm _%

01 0 0 .

F—|00 "0 FkJSgﬂ
00 0 1 Lo o ¢ |
00 0 0

% =Fraxp 1+ Kp(zp — HF 1% 1)
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In Summary

* KF:
— The true state (X) is separate from the measured (2)

— Lets you combine prior controls knowledge with
measurements to filter signals and find the truth
— It regulates the covariance (P)

¢ As P is the scatter between z and X
* So, if P > 0, then z > X (measurements > truth)

* EKF:
— Takes a Taylor series approximation to get a local “F” (and
G‘G” and ‘GH”)
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Example III:

27d Order
System Response

27 Order System Response

« Response of a 2" order system to increasing levels of

damping-
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Damping and natural frequency

z = eST where s = —({w, + jwy/1 — {?

1p 08 06 -04 02 0 02 04 06

[Adapted from Franklin, Powell and Emami-Naeini]
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Pole positions in the z-plane

¢ Poles inside the unit circle
are stable

e Poles outside the unit circle [
unstable /\/\/ i

¢ Poles on the unit circle
are oscillatory

* Realpolesat0<z<1
give exponential response

* Higher frequency of
oscillation for larger

* Lower apparent damping
for larer and r
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2" Order System Specifications

Characterizing the step response:

(J.é 7 ] o — — ______T__

0.1

Y

* Rise time (10% > 90%): t. =~ _1;8 » Steady state error to unit step:
wo
e~ 7C €ss
+ Overshoot: M Vm » Phase margin:
o 46 ¢pm ~ 100¢
¢ Settling time (to 1%): ¢, = ——
Cwo
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2" Order System Specifications

Characterizing the step response:

* 1%
[ _":_J—-..—___-‘—‘-—__;:—‘—'L——
1

09 i . ey LSS e

Y

* Rise time (10% - 90%) & Overshoot:
t, M, > {, o, : Locations of dominant poles
+ Settling time (to 1%):
t, = radius of poles: |:| < 0.01%
+ Steady state error to unit step:
e, = final value theorem e, = lim {(z = 1) F(2)}
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