

SCIR	Juic				
Week	Date	Lecture (F: 9-10:30, 42-212)			
1	26-Jul	Introduction			
2	2-Aug	RepresentingPosition& Orientation& State(Frames, Transformation Matrices & Affine Transformations)			
3	9-Aug	Robot Kinematics			
4	16-Aug	Robot Dynamics & Control			
5	23-Aug	Robot Trajectories & Motion			
6	30-Aug	Sensors & Measurement			
7	6-Sep	Perception / Computer Vision			
8	13-Sep	Localization and Navigation			
9	20-Sep	State-Space Modelling			
10	27-Sep	State-Space Control			
	4-Oct	Study break			
11	11-Oct	Motion Planning			
12	18-Oct	Vision-based control (+ Prof. P. Corke or Prof. M. Srinivasan)			
13	25-Oct	Applications in Industry (+ Prof. S. LaValle) & Course Review			
METR 4202: Robotics 27 September 201					

State-Space!

государственный контроль пространства

- It's Russian for Control
- **Dynamic systems** are described as differential equations (as compared to transfer functions)
- **Stability** is approached via the theory of Liapunov instead of frequency-domain methods (Bode and Nyquist)
- **Optimisation of System Performance** via calculus of variations (Pontryagin) (as compared to Wiener-Hopf methods)

METR 4202: Robotics

-1

State evolution • Consider the system matrix relation: $\dot{x} = Fx + Gu$ y = Hx + JuThe time solution of this system is: $x(t) = e^{F(t-t_0)} x(t_0) + \int_{t_0}^{t} = e^{F(t-\tau)} Gu(\tau) d\tau$ If you didn't know, the matrix exponential is: $e^{Kt} = I + Kt + \frac{1}{2!}K^2t^2 + \frac{1}{3!}K^3t^3 + \cdots$

Discretisation FTW!

• We can use the time-domain representation to produce difference equations!

$$\boldsymbol{x}(kT+T) = e^{\mathbf{F}T} \boldsymbol{x}(kT) + \int_{kT}^{kT+T} e^{\mathbf{F}(kT+T-\tau)} \mathbf{G}\boldsymbol{u}(\tau) d\tau$$

Notice $u(\tau)$ is not based on a discrete ZOH input, but rather an integrated time-series.

We can structure this by using the form:

$$u(\tau) = u(kT), \qquad kT \le \tau \le kT + T$$

27 September 2013 2

```
METR 4202: Robotics
```

Discretisation FTW! • Put this in the form of a new variable: $\eta = kT + T - \tau$ Then: $x(kT + T) = e^{FT}x(kT) + \left(\int_{kT}^{kT+T} e^{F\eta}d\eta\right)Gu(kT)$ Let's rename $\Phi = e^{FT}$ and $\Gamma = \left(\int_{kT}^{kT+T} e^{F\eta}d\eta\right)G$ Discrete state matrices

So,

$$\mathbf{x}(k+1) = \mathbf{\Phi}\mathbf{x}(k) + \mathbf{\Gamma}\mathbf{u}(k)$$
$$\mathbf{y}(k) = \mathbf{H}\mathbf{x}(k) + \mathbf{J}\mathbf{u}(k)$$

Again, x(k + 1) is shorthand for x(kT + T)

Note that we can also write Φ as:

$$\Psi = \mathbf{I} + \frac{\mathbf{F}T}{2!} + \frac{\mathbf{F}^2 T^2}{3!} + \cdot$$

27 September 2013 2

 $\mathbf{\Phi} = \mathbf{I} + \mathbf{F}T\mathbf{\Psi}$

METR 4202: Robotics

where

Simplifying calculation • We can also use Ψ to calculate Γ – Note that: $\Gamma = \sum_{k=0}^{\infty} \frac{\mathbf{F}^{k} T^{k}}{(k+1)!} T\mathbf{G}$ $= \Psi T\mathbf{G}$ Ψ itself can be evaluated with the series: $\Psi \cong \mathbf{I} + \frac{\mathbf{F}T}{2} \left\{ \mathbf{I} + \frac{\mathbf{F}T}{3} \left[\mathbf{I} + \cdots \frac{\mathbf{F}T}{n-1} \left(\mathbf{I} + \frac{\mathbf{F}T}{n} \right) \right] \right\}$ State-space z-transform

We can apply the z-transform to our system: $(z\mathbf{I} - \mathbf{\Phi})\mathbf{X}(z) = \mathbf{\Gamma}U(k)$ $Y(z) = \mathbf{H}\mathbf{X}(z)$

which yields the transfer function: Y(z)

$$\frac{\Gamma(z)}{X(z)} = G(z) = \mathbf{H}(z\mathbf{I} - \mathbf{\Phi})^{-1}\mathbf{\Gamma}$$

27 September 2013 2

METR 4202: Robotics

Duals and D	ual Terminology		
	Estimation		Control
Model:	$\dot{\mathbf{x}} = \mathbf{F}\mathbf{x}$ (discrete: $\mathbf{x} = \mathbf{F}_{l}\mathbf{x}$)	\leftrightarrow	$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}, \mathbf{A} = \mathbf{F}^{\dagger}$
Regulates:	P (covariance) $P = 1_{k} R^{2}$	\leftrightarrow	M (performance matrix)
Minimized function:	Q (or GQG^{1})	\leftrightarrow	V
Optimal Gain:		\leftrightarrow	G
Completeness law:	Observability	\leftrightarrow	Controllability
METR 4202: Robotics			27 September 2013 38

Ex: Kinematic KF: Tracking

• Consider a System with Constant Acceleration

- SPNS - 9/27/2013 - HEARH202 LECTINE 10 -D Mass w force Falin $F = Ma = m' \dot{x} = f$ V=X , X=V $\frac{dx}{dt^2} = \frac{dv}{dt} = \frac{f}{M}$ $\overline{X} = \begin{bmatrix} x \\ x \end{bmatrix} = \begin{bmatrix} x \\ \dot{x} \end{bmatrix}$ 2) Electriz Motor with inexpial load (torque) V=K, i [Moder Torque] (Voltage) V=K2W [Backemp] fo _____ [/M ____ [] Velocity) [Edusphena B (linear, Viscon frishin B) 10 (Hookian, hinear spring, k) Electric power to the motor: $p = v_i = \frac{k_2 w_2}{k_1}$ 1stell Mechanical powers: pri= WY inprachee ! 1- K2 >1 1- K2 >1 1: M<1 if ME100%0 - Pe= Kz Pm

et ()oc) ()) O e: Drwing Vollagz (from battery) Vi Back eng e-v=Ri comister 2= J dw Emedicióal loading $\begin{array}{c} J d \omega = k_{1} i = k_{1} (e - v) \\ d t \\ R \\ \hline R \\ \hline$ $\frac{d\omega = k_1 k_2 \ \omega + k_1}{dt} = \frac{1}{TR} = \frac{1}{TR}$ $\omega = d\phi$ (1 m 20/1/1)1 30'. V= WXr $X = \begin{bmatrix} \Theta \\ \Theta \end{bmatrix} = \begin{bmatrix} \Theta \\ \Theta \end{bmatrix}$ $\begin{bmatrix} \Theta \\ \bullet \end{bmatrix} = \begin{bmatrix} \Theta \\ A \end{bmatrix} = \begin{bmatrix} O \\ \bullet \end{bmatrix} \begin{bmatrix} O \\ -\frac{k_1k_2}{m} \end{bmatrix} \begin{bmatrix} \Theta \\ \bullet \end{bmatrix} + \cdots = \begin{bmatrix} O \\ \bullet \end{bmatrix}$ $\begin{bmatrix} 0 \\ k_1 \end{bmatrix} \begin{bmatrix} e \end{bmatrix}$

generalized Step $S(t) = S_1$ for t > t= t > 0 for t = tAGRAIGE'S Equations L=T-V = KE-PE (ingeneralited coochates) $\frac{d}{dt}\left(\frac{\partial L}{\partial \cdot q}\right) - \frac{\partial L}{\partial q_{1}} = q \quad \lambda = 1, 2, 3, \dots, r$ INVERTED PENDULUM (MOVING on a court) $T_1 = \frac{1}{2}My^2$ $T_2 = \frac{1}{2}m(y_2^2 + z_2^2)$ $\begin{array}{cccc} y_{2} = y + l \sin \Theta = y + l s_{1} \\ z_{2} = l \cos \Theta = l s_{1} \\ z_{2} = -l \Theta s_{1} \\ z_{2} = -l \Theta s_{1} \end{array}$

 $T = T_1 + T_2 = \frac{1}{2} M_y^2 + \frac{1}{2} m [ly + l\theta c_1]^2 + l^2 \theta^2 s_1^2]^2$ = $\frac{1}{2} M_y^2^2 + \frac{1}{2} m [y^2 + 2y \theta l c_1 + l^2 \theta^2]^2$ Potential Enorgy V= mgzz=mglc1 agrangian L=T-V= 1/2 (M+m) y2+ mlc, y0+1/2ml202-mglc, $\frac{d}{dt} \left(\frac{\partial L}{\partial y} \right) - \frac{\partial L}{\partial y} = f$ $\frac{dt}{dt}\left(\frac{\partial e}{\partial L}\right) - \frac{\partial e}{\partial L} = 0$ <u>dl</u> = (Mtm) ýtmlq0. 31=0 <u>JE</u> = ml Gy+ml20 3 DL= mgls, - mls, yo 4