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Schedule

27 September 2013

Week Date Lecture (F: 9-10:30, 42-212)
1 26-Jul Introduction

2 2-Aug
Representing Position & Orientation & State
(Frames, Transformation Matrices & Affine Transformations)

3 9-Aug Robot Kinematics
4 16-Aug Robot Dynamics & Control
5 23-Aug Robot Trajectories & Motion
6 30-Aug Sensors & Measurement
7 6-Sep Perception / Computer Vision
8 13-Sep Localization and Navigation
9 20-Sep State-Space Modelling

10 27-Sep State-Space Control
4-Oct Study break

11 11-Oct Motion Planning
12 18-Oct Vision-based control (+ Prof. P. Corke or Prof. M. Srinivasan)
13 25-Oct Applications in Industry (+ Prof. S. LaValle) & Course Review
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• Grades:
– I am still working on it

– I’ve read the course profile 1100×

• Lab 3:
– Working on it!

• Cool Robotics Share Site
– Jared is making a “blog”.  URL Soon!  

– He is still working on it !! 

Announcements:  We’re Working On It!

!

Cool 
Robotics 

Video 
Share
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Welcome to

State-Space!
(Why the big type?)
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Простейший Спутник-1
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State-Space!
государственный контроль пространства

• It’s Russian for Control

• Dynamic systems are described as differential equations (as 
compared to transfer functions)

• Stability is approached via the theory of Liapunov instead of 
frequency-domain methods (Bode and Nyquist)

• Optimisation of System Performance via calculus of variations 
(Pontryagin) (as compared to Wiener-Hopf methods)
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State-Space Control

27 September 2013

(That can not be all of it?   There has to be more to it than this…)
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State-Space Control

27 September 2013

Benefits:

• Characterises the process by systems of coupled, first-order 
differential equations 

• More general mathematical model 
– MIMO, time-varying, nonlinear

• Mathematically esoteric (who needs practical solutions) 

• Yet, well suited for digital computer implementation
– That is: based on vectors/matrices (think LAPACK MATLAB)
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Difference Equations & Feedback

• Start with the Open-Loop: 

• Close the loop: 

 ]

 y

• All easy!    (yesa!)

27 September 2013
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Difference Equations & Feedback

• Now add delay (image the plant is a replica with a delay τ)

• Close the loop: 

	 y ]

y t 	 y ]

• Notice we have a difference equation!
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Difference Equations & Feedback

• What happens with a single delay and a unit step?

for 0<t< τ

for τ<t<2τ

• Then with feedback we get:
1

⋯ 1
• If k<1:  then:

lim y t

27 September 2013
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output

 		 y
–
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Controllability 
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Controllability matrix

• If you can write it in CCF, then the system equations must 
be linearly independent. 

• Transformation by any nonsingular matrix preserves the 
controllability of the system.

• Thus, a nonsingular controllability matrix means x can be 
driven to any value.
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State evolution

• Consider the system matrix relation:

The time solution of this system is:

If you didn’t know, the matrix exponential is:
1
2!

1
3!

⋯
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Stability

• We can solve for the natural response 
to initial conditions :

∴

Clearly, a system will be stable provided 
eig 0
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Characteristic polynomial

• From this, we can see 

or, I 0
which is true only when det I 0

Aka. the characteristic equation!

• We can reconstruct the CP in s by writing:

det I 0
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Great, so how about control?
• Given , if we know and , we can design a 

controller such that
eig 0

• In fact, if we have full measurement and control of the states of , 
we can position the poles of the system in arbitrary locations!

(Of course, that never happens in reality.)
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Example: PID control

• Consider a system parameterised by three states: 
– , ,
– where and	

=
1

1
2

	 0 1 0 0

is the output state of the system; 

is the value of the integral; 

is the velocity.
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• We can choose to move the eigenvalues of the system 
as desired:

det
1

1
2

All of these eigenvalues must be positive.

It’s straightforward to see how adding derivative gain 
can stabilise the system. 
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Just scratching the surface

• There is a lot of stuff to state-space control

• One lecture (or even two) can’t possibly cover it all in 
depth

Go play with Matlab and check it out!
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Discretisation FTW!

• We can use the time-domain representation to produce 
difference equations!

Notice is not based on a discrete ZOH input, but rather 
an integrated time-series.

We can structure this by using the form:
, 	

27 September 2013METR 4202: Robotics 21

Discretisation FTW!

• Put this in the form of a new variable:

Then:

Let’s rename and 
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Discrete state matrices

So,
1

Again, 1 is shorthand for 

Note that we can also write as:

where

2! 3!
⋯
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Simplifying calculation

• We can also use to calculate 
– Note that:

Γ
1 !

 

itself can be evaluated with the series:

≅
2 3

⋯
1
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State-space z-transform

We can apply the z-transform to our system:

which yields the transfer function:
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State-space control design

• Design for discrete state-space systems is just like 
the continuous case.
– Apply linear state-variable feedback:

such that  det
where is the desired control characteristic equation

Predictably, this requires the system controllability matrix

					 ⋯ to be full-rank.
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Example:
Command Shaping
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Command Shaping
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Command Shaping

• Zero Vibration (ZV) 

• Zero Vibration and Derivative (ZVD) 

27 September 2013
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Example II:
Estimation
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Along multiple dimensions
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State Space

• We collect our set of uncertain variables into a vector …

x = [x1, x2,…, xN]T

• The set of values that x might take on is termed the state 
space

• There is a single true value for x, 
but it is unknown 
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State Space Dynamics
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Measured versus True

• Measurement errors are inevitable

• So, add Noise to State...
– State Dynamics becomes:

• Can represent this as a “Normal” Distribution
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Recovering The Truth

• Numerous methods

• Termed “Estimation”  because we are trying to estimate 
the truth from the signal

• A strategy discovered by Gauss

• Least Squares in Matrix Representation

27 September 2013METR 4202: Robotics 35

Recovering the Truth: Terminology
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General Problem…
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Duals and Dual Terminology
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Estimation Process in Pictures

27 September 2013

F +k w

H
k

xk–1

xk

z +k v

xk

PkPk–1

xk–1

noise

w~Qk

v~R =k �(0,r)

System:
(unknown)

Estimate:

Measured:
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Kalman Filter Process
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KF Process in Equations

27 September 2013METR 4202: Robotics 41

KF Considerations
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Ex: Kinematic KF: Tracking

• Consider a System with Constant Acceleration
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In Summary

• KF:
– The true state (x) is separate from the measured (z)

– Lets you combine prior controls knowledge with 
measurements to filter signals and find the truth

– It regulates the covariance (P)
• As P is the scatter between z and x

• So, if P  0, then z x (measurements  truth)

• EKF:  
– Takes a Taylor series approximation to get a local “F” (and 

“G” and “H”)
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Example III:
2nd Order 

System Response 
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• Response of a 2nd order system to increasing levels of 
damping:

2nd Order System Response

27 September 2013METR 4202: Robotics 46



24

Damping and natural frequency

[Adapted from Franklin, Powell and Emami-Naeini]
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• Poles inside the unit circle
are stable

• Poles outside the unit circle
unstable

• Poles on the unit circle
are oscillatory

• Real poles at 0 < z < 1
give exponential response

• Higher frequency of
oscillation for larger 

• Lower apparent damping
for larer and r

Pole positions in the z-plane
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Characterizing the step response:

2nd Order System Specifications

• Rise time (10%   90%):

• Overshoot: 

• Settling time (to 1%): 

• Steady state error to unit step: 
ess

• Phase margin: 
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Characterizing the step response:

2nd Order System Specifications

• Rise time (10%   90%)  & Overshoot: 
tr, Mp ζ, ω0 : Locations of dominant poles

• Settling time (to 1%): 
ts radius of poles:

• Steady state error to unit step: 
ess final value theorem 
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