
CHAPTER 

NINE 

LINEAR, QUADRATIC OPTIMUM CONTROL 

9.1 WHY OPTIMUM CONTROL? 

In the previous chapters we learned how to design a compensator for a 
single-input, single-output process which places the closed-loop poles wherever 
we want them to be (assuming the process is controllable and observable). Since 
the closed-loop poles determine the speed (bandwidth) and damping of the 
response, isn't this enough? Why should we want to go any farther? There are 
several good reasons. 

The first reason for seeking an optimum controller is that in a multiple­
input or mUltiple-output system, the pole-placement technique described in the 
earlier chapters does not completely specify the controller or compensator 
parameters (gains). Consider, for example, a kth-order plant with rn inputs and 
the entire state vector accessible for feedback. A nondynamic controller has 
krn parameters to be determined, but only k possible closed-loop pole locations. 
Thus we have to set rn times as many parameters as there are poles; there are 
infinitely many ways by which the same closed-loop poles can be attained. 
Which way is best? What algorithm can be used to determine the feedback 
gains? From a practical standpoint, of course, the availability of more adjust­
able parameters than the minimum number needed to achieve the desired 
closed-loop pole location is a great benefit because other things can be 
accomplished besides placing the closed-loop poles. But the absence of a 
definitive algorithm for determining a unique control law is a detriment to the 
system designer who does not know how to handle this "embarrassment of 
riches." By choosing a control law to optimize performance (in the precise 
sense to be defined shortly) this embarrassment is avoided. 
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338 CONTROL SYSTEM DESIGN 

A more cogent reason for seeking an optimum control1er is that the designer 
may not real1y know the desirable closed-loop pole locations. Choosing pole 
locations far from the origin may give very fast dynamic response but require 
control signals that are too large to be produced with the available power 
source. Use of gains that would be able to produce these signals, in the absence 
of power limitations, could cause the control signals to exceed physical limits 
(i.e., to "saturate ") . In such cases the closed-loop dynamic behavior wil1 not be 
as predicted by the linear analysis, and may even be unstable. To avoid these 
problems it often is necessary to limit the speed of response to that which can 
be achieved without saturation. Another reason for limiting speed of response is 
a desire to avoid problems of noise that typically accompany high-gain systems. 
The engineer who has acquired extensive experience with a particular type of 
process generally has an intuitive "feel" about the proper closed-loop pole 
locations. But, faced with an unfamiliar process to control and a lack of time to 
acquire the necessary insight, the engineer will appreciate a design method that 
can provide an initial design while insight is developed. The optimization theory, 
to be developed in this chapter, can serve this purpose. 

Still another reason for using optimum control theory for design is that the 
process to be control1ed may not be controllable, in the sense defined in Chap. 
5. There may be some subspace of the process state-space in which the state 
vector cannot be moved around by application of suitable control signals. The 
dynamic behavior in that subspace is not subject to control and hence not al1 
the poles of the closed-loop system can be placed at will. Hence design by pole 
placement will not work. But, by use of optimum control theory, and not 
demanding impossible behavior, it is possible to design a control system to 
control as much as can be controlh\d. If the behavior of the uncontrol1able part 
is stable, the overal1 system will behave in an acceptable manner. 

9.2 FORMULATION OF THE 
OPTIMUM CONTROL PROBLEM 

The dynamic process considered here as elsewhere in this text IS, as usual, 
characterized by the vector-matrix differential equation 

x = Ax + Bu (9.1) 

where x is the process state, u is the control input, and A and B are known 
matrices. Again, as before, we seek a linear control law 

u(t) = -Gx(t) (9.2) 

where G is a suitable gain matrix. Here, however, instead of seeking a gain 
matrix to achieve specified closed-loop pole locations, we now seek a gain to 
minimize a specified performance criterion V (or" cost function") expressed as 
the integral of a quadratic form in the state x plus a second quadratic form in 
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the control u; i.e., 

v = J,T [X'(T)Q(T)X(T) + u'(T)Ru(T)] dT 

where Q and R are symmetric matrices. 

(9.3) 

Some explanatory remarks about this performance criterion are in order 
before we attempt to find the optimum gain matrix G. 

First, we note that minimization of V also minimizes p V where p is any 
positive constant. So the problem is not altered by multiplying V by any positive 
constant. Often the constant 1/2 is used in front of V to simplify expressions 
resulting in other developments. (See Note 9.1.) 

Second, regarding the limits on the integral, the lower limit t is identified as 
the present time, and the upper limit T is the terminal time, or final time. 
The time difference T - t is the control interval, or "time-to-go." Ifthe terminal 
time T is finite and fixed, the time-to-go keeps decreasing to zero, at which time 
the control process ends. This situation is characteristic of missile guidance 
problems, as will be discussed in an example below. The more customary case, 
however, is that in which the terminal time is infinite. In this case we are 
interested in the behavior of the process "from now on," including the steady 
state. This is precisely the case addressed by pole placement, and is the case 
that will receive the major portion of our attention subsequently. 

Finally, consider the weighting matrices Q and R. These are often called the 
state weighting matrix and control weighting matrix, respectively. We are about 
to derive a "recipe" for finding the control gain matrix G in terms of these 
weighting matrices. In other words, we can plug the matrices Q and R-along 
with the matrices A and B that define the dynamic process-into a computer 
program and direct it to find G. If the process is controllable and Q and Rare 
suitable, the computer will not fail to find G. (This is not to say that the 
calculation is a numerically trivial problem-far from it-but only that the 
problem of determining G once A, B, Q, and R are given, is not a control 
system design problem but a problem in numerical analysis.) 

The question of concern to the control system designer is the selection of 
the weighting matrices Q and R. In candor one must admit that minimization of 
a quadratic integral of the form of (9.3) is rarely the true design objective. The 
problem, however, is that the true design objective often cannot be expressed in 
mathematical terms. And even in those instances when the design objective is 
amenable to mathematical expression, it is usually all but impossible to solve 
for the optimum control law. Expression of the design objective in the form of 
a quadratic integral is a practical compromise between formulating the real 
problem that cannot be solved, and formulating a somewhat artificial problem 
that can be solved easily. The need for such compromises arises in many con­
texts, and the control system designer should not feel guilty about being acquies­
cent to the need. 

In the performance or cost function defined by (9.3) two terms contribute to 
the integrated cost of control: the quadratic form x' Qx which represents a 
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penalty on the deviation of the state x from the origin and the term u'Ru which 
represents the" cost of control." This means, of course, that the desired state is 
the origin, not some other state. (In Chap. 5 we studied how it is possible to 
formulate a problem with a nonzero desired state in the form of a regulator 
problem. This discussion will be resumed in Sec. 9.6.) The weighting matrix Q 
specifies the importance of the various components of the state vector relative 
to each other. For example, suppose that XI represents the system error, and 
that X2, •.• , Xk represent successive derivatives, i.e., 

Xk = X (k-I) 

If oniy the error and none of its derivatives are of concern, then we might 
select a state weighting matrix 

Q = [~ . ~ : · ~l 
o 0 .. . 0 

(9.4) 

which will yield the quadratic form 

x'Qx = x~ 

But the choice of (9.4) as a state weighting;lmatrix may lead to a control system 
in which the velocity X2 = x is larger than desired. To limit the velocity, the 
performance integral might include a velocity penalty, i.e., 

x'Qx = xT + C2X ~ 

which would result from a state weighting matrix 

Another possible situation is one in which we are interested in the state only 
through its influence on the system output 

y = ex 

For example, for a system with a single output 

y = c'x 

a suitable performance criterion might well be 

y2 = x'cc'x 
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So in this case 

Q = ee' 

It should by now be obvious that the choice of the state weighting matrix Q 
depends on what the system designer is trying to achieve. 

The considerations alluded to above with regard to Q apply as well to the 
control weighting matrix R. The term u' Ru in the performance index (9.3) is 
included in an attempt to limit the magnitude of the control signal u. Unless a 
"cost" is imposed for use of control, the design that emerges is liable to 
generate control signals that cannot be achieved by the actuator-the physical 
device that produces the control signal-and the result will be that the control 
signal will saturate at the maximum signal that can be produced. This is often 
exactly what the designer desires . In most cases, saturation of the control will 
produce the fastest possible response. But when saturation occurs, the closed­
loop system behavior that was predicted on the basis that saturation will not 
occur, may be very different from the actual system behavior. A system that a 
linear design predicts to be stable may even be unstable when the control signal 
is saturated. Thus in a desire to avoid saturation and its consequences, the 
control signal weighting matrix is selected large enough to avoid saturation of 
the control signal under normal conditions of operation. 

The relationship between the weighting matrices Q and R and the dynamic 
behavior of the closed-loop system depend of course on the matrices A and B 
and are quite complex. It is impractical to predict the effect on closed-loop 
behavior of a given pair of weighting matrices. A suitable approach for the 
designer would be to solve for the gain matrices G that result from a range of 
weighting matrices Q and R, and calculate (or simulate) the corresponding 
closed-loop response. The gain matrix G that produces the response closest to 
meeting the design objectives is the ultimate selection. With the software that is 
now widely available, it is a simple matter to solve for G given A, B, Q, and R. 
In a few hours time, the gain matrices and transient response that result for a 
dozen or more combinations of Q and R can be determined, and a suitable 
selection of G can be made. 

Further comments relating to the selection of the weighting matrices will be 
given after the general theory is developed and illustrated by a few examples. 

9.3 QUADRATIC INTEGR'ALS AND 
MATRIX DIFFERENTIAL EQUATIONS 

When the control law (9.2) is used to control the dynamic process (9.1), the 
closed-loop dynamic behavior is given by 

x = Ax - BGx = A cx (9.5) 

where 

A c = A - BG (9.6) 
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is the" closed-loop" dynamics matrix. In most cases considered in this text, We 
are interested in the case in which A, B, and G are constant matrices, but there 
is really no need to restrict them to be constant; in fact, the theoretical 
development is much easier if we do not assume that they are constant. Thus, 
we permit the closed-loop matrix A c to vary with time. Since Ac may be 
time-varying we cannot write the solution to (9.5) as a matrix exponential. But 
the solution to (9.5) can be written in terms of the general state transition matrix 
introduced in Chap. 3: 

(9.7) 

where <I> c is the state-transition matrix corresponding to Ac. Equation (9.7) 
merely states that the state at any time 7 depends linearly on the state at any 
other time t. In what follows there will be no need to have an expression for <I> c; 
this is fortunate, because in general no simple expression is available. 

Using (9.7), the performance index (9.3) can be expressed as a quadratic 
form in the initial state x(t). In particular 

V = f.T [X'(7)QX(7) + x'(7)G'RGx(r)] dr 

= f.T x'(t)<I>~(r, t){Q+ G'RG}<I>c(7, t)x(t) dr 

The initial state x( t) can be moved outside the integral to yield 

V = x'(t)M(t, T)x(t) 

where 

M(t, T) = f.T <I>~(r, t){Q + G'RG}<I>c(r, t) d7 

(Note that M is a symmetric matrix.) 

(9.8) 

(9.9) 

(9.10) 

For purposes of determining the optimum gain, i.e., the matrix G which 
results in the closed-loop dynamics matrix Ac = A - BG which minimizes the 
resulting integral (9.10), it is convenient to find a differential equation satisfied 
by (9.10). For this purpose, we note that V in (9.8) and (9.9) is a function of the 
initial time t. Thus we can write (9.8) as 

Vet) = f.T x'(7)L(r)x(7) d7 (9.11) 

where 

L= Q+ G'RG (9.12) 

(Note that L is not restricted to be constant.) Thus, by the definition of an 
integral 

dV I dt = -x'( 7)Lx( 7) T~t = -x'(t)Lx(t) (9.13) 
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But, from (9.9) 

dV . dt = x'(t)M(t, T)x(t) + x'(t)M(t, T)x(t) + x'(t)M(t, T)x(t) (9.14) 

(The dot over M in (9.14) denotes differentiation with respect to t, that is, 

M(t, T) = aM(t, T) / at) 

On using the closed-loop differential equation (9.5) we obtain from (9 .14) 

dV . dt = x'(t)(A ~(t)M(t, T) + M(t, T) + M(I, T)Ac(t)]x(t) (9.15) 

We thus have two expressions for dV/dt: one given by (9.13) and one given 
by (9.15). Both are quadratic forms in the initial state x( t), which is arbitrary. 
The only way two quadratic forms in x can be equal for any (arbitrary) x is if 
the matrices underlying the forms are equal. Thus we have found that the matrix 
M satisfies the differential equation 

- L= A~M+ M+ MA 

or, in the more customary form 

-M = MA + A~M + L (9.16) 

This is an important differential equation. It appears in many forms in control 
theory and estimation. To make it look neater, the arguments have been omitted 
in (9.16) . But one should not forget that 

M = M(t, T) L = L(t) 

We have already determined the solution to (9.16) which, using (9.10), is 

M(t, T) = J,T <I>~(T, t)L(t)<I> c(T, t) dT (9.17) 

Equation (9.16) is a first-order matrix differential equation and thus 
requires a single" initial condition" to pin it down completely. This condition 
is obtained from the integral (9.17). Clearly 

M(T, T) = 0 (9.18) 

is the required condition. 

9.4 THE OPTIMUM GAIN MATRIX 

When any gain matrix G is chosen to close the loop, the corresponding 
closed-loop performance has been shown to be given by 

Vet) = x'(t)M(t, T)x(t) 

where M( t, T) is the solution to (9.16), which, in terms of the matrices A, B, G, 

,4\\.\ 
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Q, and R becomes 

-M = M(A - BG) + (A' - G'B')M + Q + G'RG (9.19) 

Our task now is to find the matrix G which makes the solution to (9.19) as 
small as possible. What does it mean for one matrix to be smaller than another? 
We are really interested in the quadratic forms resulting from these matrices 
and thus we are seeking the matrix M for which the quadratic form ' 

V = x'Mx < x'Mx 

for any arbitrary initial state x( t) and any matrix M =;C. M. 
The problem of finding an optimum gain matrix can be approached by a 

number of avenues. (See Note 9.l.) The approach we adopt here is to assume 
that a minimizing gain G = 0 exists and results in an optimum (i.e., minimum 
M = M). We will then find a matrix differential equation that M must satisfy 
in order for it to result in a smaller value of V than results from any other 
matrix. 

Now the minimizing matrix M that results from the minimizing gain (] 
must of course satisfy (9.19), i.e., 

-M = M(A - BO) + (A'- O'B')M + Q + O'RO (9.20) 

Any nonoptimum gain matrix G and the corresponding matrix M can be 
expressed in terms of these matrices: 

Thus (9.19) becomes 

M=M+N 

G=O+Z 

- (M + IV) = (M + N)[A - B(O + Z)] + [A'- (0' + Z')B'](M + N) 

+ Q + (0' + Z')R(O +Z) (9.21 ) 

On subtracting (9.20) from (9.21) we obtain the following differential equation 
for N 

-IV = NAc + A~N + (O'R - MB)Z + Z'(RO - B'M) + Z'RZ (9.22) 

where Ac = A - BG = A - B( 0 + Z). 
The differential equation (9.22) is exactly in the form of (9.16) with L in the 

latter being given by 

L = (O'R - MB)Z + Z'(O'R - MB), + Z'RZ 

Using (9.17) we see that the solution to (9.22) is of the form 

N(t, T) = fT cI>~(r, t)LcI>c(r, t) dr 

Now if V is minimum, then we must have 

x'Mx ~ x'(M + N)x = x'Mx + x'Nx 

(9.23) 

(9.24) 
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which implies that the quadratic form x' Nx must be positive-definite, or at least 
positive semidefinite. Now look at L as given by (9.23). If Z is sufficiently small 
the linear terms dominate the quadratic term Z' RZ. Thus, one can readily find 
values of Z which make L negative-definite, unless the linear term in (9.23) is 
absent altogether! Thus we conclude that for the control law 6- to be optimum, 
we must have 

R6-- B'M =0 (9.25) 

or, on the assumption that the control weighting matrix R is nonsingular 

(9.26) 

This gives the optimum gain matrix in terms of the solution to the differential 
equation (9.20) that determines M. When (9.26) is substituted into (9.20) the 
following differential equation results for M: 

-M = MA + A'M - MBR- I B'M + Q (9.27) 

This matrix differential equation, one of the most famous in the literature of 
modern control theory, gives the matrix M which, using (9.26), gives the 
optimum gain matrix 6. (A historical discussion of the background of this 
equation is given in Note 9.2.) 

It is noted that in addition to the linear terms MA and A'M in (9.27) there 
is also present the quadratic term - MBR- l B' M. A scalar first-order differential 
equation with a linear term and a quadratic term (as well as a constant term) is 
known as a Riccati equation in the mathematical literature and the terminology 
was extended by Kalman[l] to the matrix case. Nowadays (9.27) is identified in 
the literature of optimum control as the Riccati equation. 

Because of the presence of the quadratic term, no general formula for the 
solution to (9.27), analogous to the integral (9.17) for the linear equation (9.16), 
can be given. There are, of course, special cases-one of which is contained in 
Example 9E below-in which M(t, T) can be determined analytically. But in 
most practical cases of interest, it is necessary to solve for M(t, T) by some 
appropriate numerical method. 

One obvious method of solving is the numerical integration of (9.27). Since 
M is symmetric, there are k(k + 1)/2 coupled, scalar equations to be integrated. 
It should be noted that these equatIons are integrated backward in time, 
because the condition that must be satisfied is 

M(T, T) = 0 

and we are interested in M(t, T) for t < T 

9.5 THE STEADY STATE SOLUTION 

In an application in which the control interval is finite, the gain matrix G will 
generally be time-varying even when the matrices A, B, Q, and R are all 
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constant, because the solution matrix M( t, T) of the matrix Riccati equation 
will not be constant. But suppose the control interval is infinite. We want a 
control gain G which minimizes the performance integral 

YO() = J,O() (x'Qx + u'Ru) dr (9.28) 

In this case the terminal time T is infinite, so the integration (backward in time) 
of (9.28) will either converge to a constant matrix Nt or grow without limit. If it 

converges to a limit, the derivative !VI tends to zero. Hence for an infinite 
terminal time 

where Nt satisfies the algebraic quadratic equation (sometimes called the 
algebraic Riccati equation or ARE) 

0= NtA+A'M - NtBR - 'B'M+ Q 

and the optimum gain in the steady state is given by 

G = R-1B'M 

(9.29) 

(9.30) 

The single matrix equation of (9.29) represents a set of k(k + 1)/2 coupled 
scalar quadratic equations. Each quadratic equation in the set in general has 
two solutions, so we may reasonably expect that there are 2[k(k + 1)/2] = 
k(k + 1) different (symmetric) solutions to (9.29). Are all the solutions correct? 
Is only one solution correct? Are there perhaps no correct solutions? 

The answers to these questions are, as one might imagine, connected with 
the issues of stability and controllability, although from a strictly mathematical 
standpoint they depend on the three matrices A, BR- 1 B, and Q and their 
relationships with each other. Kalman[ I, 2] and others after him have addressed 
the issues. A complete discussion of this subject entails not only controllability, 
but also observability, and the more subtle concepts of stabilizability, recon­
structability, and detectability, and is well beyond the scope of this book. (See 
Note 5.2.) 

For most design applications the following facts about the solution of (9.29) 
will suffice: 

(a) If the system is asymptotically stable, or 
(b) If the system defined by the matrices (A, B) is controllable, and the system 

defined by (A, e) where e'e = Q, is observable, 

Then the algebraic Riccati equation (ARE) has a unique, positive definite 
solution Nt which minimizes YO() when the control law u = -R-1B'Mx is 
used. 

It should be understood that the total number of symmetric solutions (count­
ing those with complex elements) is still k( k + I). The assertion df the last 
paragraph is that one of these solutions (and not more than one) is positive-
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definite. Since the integral (9.28) is clearly positive-definite, that solution is the 
correct one. Let us examine the other possibilities. 

It may happen that (9.29) may have no positive definite solutions. In this 
case, there is no control law which minimizes Voo. This must mean that Veo 
becomes infinite for any possible control law, and helps to explain why 
asymptotic stability guarantees that the ARE has a unique positive-definite 
solution: the control law u = 0 will result in a finite value of Veo and we would 
suppose that other control laws exist which can reduce Veo still further. If the 
system x = Ax + Bu is not asymptotically stable, however, the control law 
u = 0 does not yield a finite value of Veo for any initial condition x = X(l), and 
it will be necessary to actively intervene with a nonzero control. This is how the 
idea of controllability arises, since if the system is controllable, a control law 
can be found which produces a closed-loop dynamics matrix Ac = A - BO with 
eigenvalues at arbitrary locations. Even if the system is not controllable, but 
merely "stabilizable," i.e., a control law can be found which can move the 
unstable eigenvalues to the left half-plane, a finite value of Veo can be achieved. 

How does observability enter the picture? The system defined by A and B 
may be uncontrollable and even unstabilizable, but the matrix Q may be chosen 
so that those state variables corresponding to the unstabilizable portion of 
i = Ax + Bu are not weighted in x' Qx. In this case, there is reason to expect 
that Veo can be made finite. It might at first seem strange and impractical to 
consider a control law which does not stabilize a system, but there are many 
situations in which this is entirely reasonable. The most common instance is 
when the state is really a "metastate" comprising both the dynamic state x and 
the exogenous state Xo. By hypothesis the latter cannot be controlled by the 
input, and it may not be asymptotically stable. 

In addition to the possibility that the ARE does not have even one 
positive-definite solution, it is also conceivable that the ARE has more than one. 
Since the total number of possible solutions is finite, obviously the one we are 
looking for to minimize Veo is the one that yields the smallest value of x'Mx. If 
we could find all the positive-definite solutions we should surely find the proper 
one. 

If we could only find all the solutions to (9.29) there would be no difficulty 
in establishing which, if any, of the solutions is the correct one. The great 
difficulty arises because in most practical cases, the ARE (9.29) must be solved 
numerically and the numerical problem is far from being easy. (See Note 9.3.) 
If a computer program that embodies the algorithm for solving the ARE is set 
to work crunching out a solution that does not exist, we should not be surprised 
to find it grinding away forever. So it is important to be able to find out whether 
the sought-after solution exists before the crunching starts. 

Example 9A Inverted pendulum It is recalled from Example 3D that the state variables are 
Xl = () (angular position) and x2 = iJ (angular velocity). The matrices defining the dynamics, 
as determined earlier are 
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A control law is sought to minimize the performance index 

V = f.OO ( 02 + ::) dr (9A.2) 

where u is the angular acceleration. For this performance criterion, the weighting matrices are 

seen to be 

Q = [~ ~J 
Let the performance matrix M be given by 

The gain matrix, in terms of the elements of M is 

A A [111, G = R-'B'M = c2[O, \] 
1112 

The terms needed for the matrix quadratic (9.29) are 

A A [1112!l2 
A'M = (MAl' = 

/11, 

Thus, the individual terms of (9.29) are 

0= 211120 2 
- C2/11~ + I 

0= 111, + 1113!l2 - C
2

11121113 

0= 21112 - C2111~ 

(9A.3) 

(9A.4) 

In this instance (9A.4) are simple enough to solve algebraically. In particular, the first 

equation of (9A.4) has the solution 

!l2±~ 

We do not yet know which sign on the radical in 1112 is correct, but we will find out 
shortly. From the third equation in (9A.4) 

I 
1113 =-Jim; 

C 

We note that if the lower (-) sign is used then 1112 would be negative and this would make /113 

imaginary. Since the matrix M of the quadratic form x'(t)Mx(t) must be real, an imaginary 
number for one of its elements is unacceptable. Thus we conclude that the upper (+) sign must 

be used. This gives 



LINEAR, QUADRATIC OPTIMUM CONTROL 349 

And hence the gain matrix (9A.3) has elements 

gl = n2 + Jn4 + e2 g2 = J2 [n2 + Jn4 + e2]1/2 
The remaining term rn l in M is obtained from the second equation in (9A.4), but it is not 

needed in the control law. 
The closed-loop behavior of the system is of interest. The matrix of the closed-loop 

system is 

Ac =A-BG = [~2 ~J-[~Jgl g2] 

= [ - J;4 + e2 - h(n2 + ~n4 + e2)1/2 ] 

And the characteristic equation is 

1000 

100 

1000 

S2 + hen2 + Jn4 + e2)1 /2 s + Jn4 + c2 = 0 

Asymptote 

jw 
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Figure 9.1 Locus of closed-loop poles of controlled inverted pendulum as weighting factor is 
varied. 
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the roots of which are 

(9A.5) 

where 

The locus of closed-loop poles as the weighting factor c is varied from 00 to 0 as shown 
in Fig. 9.1. The following characteristics of the locus are noteworthy: 

(a) As c increases, the closed-loop roots tend to asymptotes at 45° to the real axis, and 
move out to 00 along these asymptotes. This implies that the response time tends to zero and 
the damping factor tends to I; = J2/2 = 0.707. That the response time tends to zero is not 
surprising, since increasing c decreases the cost of control and hence makes it desirable to 
have a rapid response time. The asymptotic damping factor of 0.707 is entirely reasonable, 
since this entails good response without overshoot. But why I; ~ J2/2 exactly and not SOme 
other value may seem astonishing. It turns out that the root loci of second-order systems under 
very general conditions tend to have a damping factor of I; = J2/2. A discussion of this feature 
is given below. 

(b) As c tends to zero, the cost of control tends to a nonzero value. If the open-loop 
system were stable, and it would turn out that the gains gl and g2 would tend to zero and the 
open-loop system would" coast" to rest, without incurring any control cost. Since control cost 
is paramount, this solution would be reasonable. In the present case, however, the open-loop 
system is unstable, and cannot coast to rest without control. A certain amount of control is 
necessary to stabilize the system. But why do both closed-loop system poles tend to s = -11? 
One might have thought that only one closed-loop pole would tend to the stable open-loop 
pole at s = -11 and that the other would tend to the origin. The fact that the second 
closed-loop pole also tends to s = -11 is a consequence of a general result that as the control 
weighting becomes very large, the closed loop poles corresponding to unstable open loop poles 
tend to their mirror images with respect to the imaginary axis. In other words, if Sj = +ex + jf3 
(ex ~ 0) in the open-loop system, then the corresponding pole in the closed-loop system tends 
to SI = -ex + jf3. This is a general property of optimum control laws, as discussed in Note 9.4. 

9.6 DISTURBANCES AND REFERENCE INPUTS: 
EXOGENOUS VARIABLES 

In Chap. 7 we considered a more general model for the control process of the 
form 

x = Ax + Bu + Exo (9.31) 

where Xo is the exogenous vector. As in Chap. 7, we assume that Xo satisfies a 
known differential equation 

Xo = Aoxo 

Hence the entire (meta)state satisfies the differential equation 

x = Ax+Bu 
where 

(9.32) 
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(9.33) 

Obviously, the exogenous state Xo is not controllable; hence an appropriate 
performance integral would be 

V = f.T (x'Qx + u'Ru) dT (9.34) 

Thus, the weighting matrix for the metastate is of the form 

The upper limit on the integral in (9.34) is intentionally not made infinite as 
one might at first be tempted to do. Why? Suppose that the exogenous state 
does not tend to zero . It may not be possible to achieve a steady state error of 
zero with a control u that also goes to zero; it usually isn't possible to do so. In 
that case, either x' Qx doesn't go to zero, or u'Ru doesn't go to zero. In either 
case, the integral in (9.34) will become infinite as T 400. One way of approach­
ing this problem is to find a control ii which satisfies the requirements of zero 
steady state error. For x = x = 0, the required steady state control ii must satisfy 

Bii + Exo = ° (9.35) 

and then express the total control u as the sum of the steady state control and 
a "corrective" control v: 

u=ii+v 

In this case (9.31) becomes 

x = Ax + Bv 

N ow the corrective control v does tend to zero and it is proper to minimize 

\1= f.oo (x'Qx + v'Rv) dT (9.36) 

There are several problems with this approach. First, there may not be a control 
ii which satisfies (9.35); in other words, it may not be possible to achieve zero 
steady state error, but it would still be possible to minimize (9.34) for any finite 
time. The control law that is approached by the solution to (9.34) as T 400, 

even if the limiting integral does not exist, may be just fine. Second, the control 
which achieves (9.35) may not be unique, hence determination of a unique v by 
minimizing (9.36) does not pin down u = ii + v. And finally, minimizing the 
quadratic form 

V = f.T (x'Qx + v'Rv) dT 
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is not the same as minimizing 

V = J,T (X'QX + u'Ru) dr = J,T [X'QX + (ii + v)'R(ii + v)] dr 

for a fixed ii, because of the presence of the cross terms v'Rii' + ii'Rv. If We 
really want to minimize V we don't want to minimize V. 

The finite time duration problem (9.3) can be solved without theoretical 
difficulty. Partition the performance matrix M for the metasystem correspond­
ingly 

[A 1 A J 
M = [§t-r-§:- (9.37) 

The gain matrix G for the metasystem is given by 

[

AI A ] 
A -I, , MI 1 M2 -I, A 

G = R [B : 0] -M"-,-i-
M
"- = [R B M, 

2 1 ) 

(9.38) 

Note that the sub matrix NI) is not needed. This is a welcome fact, as we shall 
soon see. 

Performing the matrix multiplications required by (9.27) we obtain the 
differential equations for the submatrices in (9.37): 

(9.39) 

(9.40) 

(9.41) 

Owing to the special structure of A, B, and Q, the following facts about the 
submatrices of M emerge: 

(a) The solution for NIl> and hence the corresponding gain R - I B' NIt. is the 
same as it would have been with Xo absent from the problem, i.e., if we were 
designing the control law for the simple regulator problem. A steady state 
solution for NIl can be obtained if the pair (A, B) is controllable, as explained 
above. 

(b) The differential equation for NI2 , from which the gain R - I B' NI2 is 
determined, does not depend on NI), and in fact is a linear equation, which can 
also be written 

(9.42) 

where 

Ac = ~ - BR-1B'NI, 

is the closed-loop dynamics matrix of the regulator subsystem. A steady state 
solution to (9.42) generally also can be found. It must satisfy 

(9.43) 
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We thus have the necessary gains to realize the control law 

u = -R- 'B'M,x - R - 'B'M2xO (9 .44) 

(c) The differential equation (9.41) for M3 is also linear. Whether it has a 
steady state solution depends on Ao. If Ao = 0, then (9.41) does not have a 
steady state solution. But this doesn't matter because M3 is not used in the 
determination of the gain matrix. 

The case of greatest interest is that in which the matrix Ao is zero. In this 
case the exogenous subsystem produces signals that are constant. These are the 
most frequently used reference signals. For this case the equations for M2 and 
M3 , as given by (9.40) and (9.41), become 

(9.45) 

and 

(9.46) 

Note that the right-hand side of (9.46) does not contain M3 and hence 

M3(t) = M 3 ( T) + J,T (M~E + E'M2 - M~BR-' B' M 2) dr (9.47) 

In general the integral in (9.47) goes to infinity as T ~ 00; in other words a 
steady state solution to (9.46) does not exist, and any attempt to obtain such a 
solution, by setting M3 to zero, will generally be erroneous. The correct relation­
ship for M2 is given by the solution to (9.45) with M2 = 0 

M2 = -(A~)-' MIE (9.48) 

where M, is the steady state solution to (9.39), i.e., the control matrix for the 
regulator design. Thus the gain for the exogenous variables 

Go = _R-IB'(A~) - 'MIE = B*E = G~ 
where (9.49) 

B* = -R - 'B'(A~)-'M, 

In Chap. 6 we considered the problem of reducing the steady state error to 
zero in the presence of exogenous variables. We found there that 

Go = B# E 

where 

(9.50) 

By use of the optimization technique of this chapter we have also found 
gains for the exogenous ;Variables. Since the matrix B# is unique for a given 
regulator gain matrix G, it follows that the gains given by (9.48) will reduce the 
steady state error to zero (for arbitrary E) only when B* given by (9.49) and B# 
given by (9.50) are the same. 
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Example 98 Accelerometer proof mass "capture" We previously determined that the differen­
tial equations governing the displacement z of the proof mass in an accelerometer, shown in 
Fig. 9.2, is given by 

(9B.I) 

where KI!Vi is the acceleration due to the spring, BI!Vi is the acceleration due to friction, and 
a is the specific force (nongravitational acceleration) acting on the body. Suppose that the 
spring and damping forces are both absent. Then of course the proof mass would strike the 
end wall of the instrument after a short time. To "capture" the proof mass, i.e., to keep it from 
striking the end walls, a control force is generated in the typical instrument. (This can be 
accomplished magnetically, for example. The means of generating the force is not germane.) 
So instead of (9B.I), the differential equations for the proof mass, with the acceleration due to 
the capture force denoted by u, are 

(9B.2) 

These are just the equations of a double-integrator with an external disturbance a and a 
control u. For a constant acceleration a, the control acceleration must tend to -a; otherwise 
the proof mass will surely hit the wall. Thus, by measuring the control acceleration u that is 
needed to keep the proof mass from moving toward the walls, we can determine the external 
acceleration a. In Example II F, using the separation principle, we will develop the design 
for a complete control system to capture the proof mass and provide an estimate a of the input 
acceleration a. But for now, let us consider only the control problem when all the state variables, 
including the input acceleration a, treated as a state variable, are assumed to be measurable. 
(lfthe acceleration a could be measured, there would of course be no need for this accelerometer.) 

First, consider the control problem of returning the proof mass to the origin (XI = x2 = 0) 
in the absence of an input acceleration (a = 0). The matrices for the dynamics are 

A = [~ ~] B = [~] (9B.3) 

We use a performance criterion of the form 

(9B.4) 

The gain matrix for this control design is 

{9B.5] 

a 
Case of 

......... accelerometer 

Figure 9.2 Force-rebalanced (" captured ") accelerometer. 
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and the components of M are given by 

the solutions to which are 

- I m2 = e 

(9B.6) 

(9B.7) 

(For details, see Example 9A for the inverted pendulum. The present example is a special case 
of Example 9A with 0 2 = 0.) 

Using (98.5) the gain matrix is obtained: 

G = [e l m2 e2 m3 ] = [e J2c] 

The dynamics matrix of the closed-loop system is given by 

Hence the closed-loop poles are the roots of 

or 

lsI - Acl = I CS 
- I I = s2 + J2cs + c = 0 

s + J2c 

J2 
sI2=-c( - I±j) . 2 

(9B.8) 

(9B.9) 

The locus of the closed-loop poles are thus straight lines at 45 degrees to the coordinate axes 
and moving away from the origin as c .... 00. 

The case we really want to consider, of course, is a nonzero external acceleration. Any 
model for a can be used (e.g., a step, a ramp, etc.). Suppose that it is modeled as a step 

a=O (9B.IO) 

Adjoining this to (9B.2) gives 

The matrices are in the form of (9.33) with 

E = [~] Ao = 0 

Thus the theory developed below (9.33) applies. In particular, let 

Then, as already found, 
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The sub matrix M2 is found using (9.47). In this application (9.47) is 

0= [21/:~~1/2 21/~:~3/2] [~] + A~[ ::] 
or, upon use of Ac given by (9B.9), 

M2 = [::] = -(A~)-1[21/~:~3/2] = [C~2] (9B.12) 

Thus the gain matrix is given by 

G=[G R- I B'M2J 

The part of the gain matrix G due to the state [XI> X 2]' was already found in (9B.8) . The 
additional gain due to the forcing acceleration a = X) is 

G a = R- I B'M2 = e
2[O l{::] = 1 

It is not in the least bit surprising that the gain for the external acceleration should turn out to 
be I exactly. In fact any other gain would be surprising: Obviously, when Xl and X2 are zero, 
the control acceleration u should be exactly equal in magnitude and opposite in sign to the 
external acceleration. Thus the control law 

is exactly what one would have expected to obtain. 
Note that we never needed to determine the remaining term m6 of M. The differential 

equation for m6 is a special case of (9.45). In particular, 

Thus 

which implies that a steady state solution for m6 does not exist. This is not surprising, in view 
of the fact that a constant value of external acceleration demands a constant, nonzero control, 
and this cannot result in a finite value of the performance integral V over an infinite time 
interval. Nevertheless, the control law (9B.13) is eminently reasonable, provided an observer is 
used to estimate the unmeasured state variables x) = a and possibly also x 2 = XI. (An optimum 
observer design is the subject of Examples IIA and II F.) 

Example 9C Temperature control The temperature control considered in Example 6E and 7D 
can also be designed by the method of this section. Suppose we have a set of capacitances and 
resistances for which the dynamic model of (6E.l) becomes 

(9C.1) 

where Xl and X2 are internal temperatures, and where Xo is the outside (ambient) temperature 
which may be assumed constant, i.e., 

(9C.2) 

From (9C.l) and (9C.2) we obtain the metasystem 
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Thus the' submatrices of A and Bare 

[
-I 

A= 
I B = [~] E = [~] (9C.3) Ao = 0 

Berore starting the calculations , rake note of some reatures of the problem due to lhe 

physics of lhe process. First, it is recalled 'that th e temperatures X I and X2 are 'measured with 
respect to any urbilrary reference temperature. Tf the ambient temperature is a lso at lhe 
reference, i.e., Xo = 0, then the steady state condilion is that all tcmpcralUres are equal with no 
heal input (/I = 0). T he contro l problem in lhis case is 10 add heat (/I > 0) or remove heat 
(II < 0) to bring the temperature to the ambient in an optimum manner. To visualize the 
control problem, one might imagine that XI and Xz arc temperatures in a building which ha 
cooled down overnigh.t. Tn the morning, the indoor temperatures, baving reached Ihe nighttime 
ambient temperature, are lower than the daytime ambient, whrch Just happcn$ Lo be the 
desired temperature. Thus our problem is to hea t the building t raise its temperature to that 
of the ambient. A similar problem might be to cool a building that has reached a high daytime 
temperature to the ambient. temperature of a pleasa nt 5umJlle( evening. 

In mosl climates, of course, thc ambient temperature is e ither LOO hal or 100 cold, so that 
Xo # O. In the winter, heat must be added continuously ( u > 0) to keep the temperatu.re above 
lhe ambient; in [he summer, heat must be removed continuously (1/ < 0) 10 keep the 
temperature below the ambient. Since our model of (9 . 1) includes on ly onc control variable 
(one heater or air conditioner) it is clear thal il is not possible to keep both X I and x 2. at lhe 
reference temperalure. We can con trol XI or . ( l or a weighled average of lhc two, bUI nOI bolh 
independently. The thermal model (9 ,2) suggests that I is the temperature of the area 
nearest the source of heat (in a residence, perhaps downstairs) and 2 is lhe lemp,crulllre of (he 
area fartbesl from the lleat (perhaps upstairs) and most prone to heal loss to the ambient 
environment. rn the daytime we might wish lO give more weigh t to the temperature XI> and in 
the nighttime we might wish 10 give more weight 10 X l' Thus a performance c riterion of the 

form IT 
V = , [(C1X I + c2xY + eu 2

] dT (9CA) 

might be lised, with C1 » C2 in the daytime and C2 » C I in the nighttime. The state and control 
weighting matrices would thus be 

[ 

C2 
Q_ 1 

C
'

C2 

C I C2 ] 

d 
(9C.S) 

We are now prepared to perform the required calculations, First we find the gain matrix 
for the case in which Xo = 0 using 

(9C.6) 
with 

(9C.7) ~ [ml M , = 
m2 

satisfying (9.39), Using the data matrices of (9C.3) and (9C.S), we find that the steady state 
values of m l , m2 , and m3 satisfy 

-2ml + 2m2 - k -2m~ + d = 0 

m l - 4m2 + m3 - k - 2m l m2 + C I C2 = 0 

2m2 - 6m3 - k-2m~ + c~ = 0 

(9C.8) 

(9C.9) 

(9C. [0) 

These equations are too complicated to solve other than numerically, But the numerical 
values are easily obtained, and from these, using (9C.6), the gains are obtained: 

(9C.1 [) 

Numerical values for gl and g2 for several values of C I and c2 are given in Table 9C.1. 
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Table 9C.l Temperature control gains 

c, = I, C2 = 0 c, = l,c2 = I c, = 0, C2 = I 

k g, g2 g, g2 g, g2 

I 0.4957 0.1185 0.685 0.419 0.0586 0.0603 
10-' 9.120 0.7067 9.860 8.470 1.692 3.122 
10-2 99.02 0.9628 99.981 98.06 10.562 66.338 
10- 3 999.0 0.99615 1000. 998.0 40.855 875.44 
10-4 9999.0 0.99931 10000. 9998.0 137.46 9585.6 

The variation of gains shown in Table 9C.I seems reasonable: as the control weighting is 
decreased (k ~ 0) the gains get higher-as the cost of energy decreases the temperature can be 
brought to the ambient more rapidly. Also note that the higher gain is associated with the state 
variable that is weighted more heavily in the performance index-also as expected. But the 
gains are unequal when the states are equally weighted because the heat (or cooling) input is 
not distributed to x, and X2 in the same way. 

Having found gl and g2 we can now determine the gain for the ambient temperature: 

go = B*E (9C.12) 

Where B* is given by (9.49). Performing the required calculations we obtain the results shown 
in Table 9C.2. 

It is of interest to compare the gain go given by (9C.12) with the gain go given by (6.48), 
needed for zero steady state error. For the weighting matrix 

(9C.I3) 

we find from (6.48) that 

(9C.14) 

for c2 = 0 

for c, = 0 

The results, using (9C.14) with gl and g2 as given in Table 9C.I, are also shown in Table 
9C.2 for purpose of comparison. It is evident that except for the largest values (k > 0.1) of 

Table 9C.2 Ambient temperature gains 

c, = l,c2 =0 C1 = C2 = I c, = 0, C2 = I 

k B*E B#E B*E B"'E B*E B#E 

1 0.2178 0.5873 0.685 1.13.3 0.3283 2.1172 
10-1 0.1511 0.1960 1.645 1.695 4.991 5.924 
10-2 0.02036 0.0250 1.954 1.96 23.084 23.124 
10- 3 0.00216 0.00253 1.995 2.0 83.65 83.71 
10-4 -0 -0 1.9995 2.0 277.0 276.9 
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control weighting, lhe gains for the ambient temperature as given by B* E arc very close to the 
gains given by B'" E required to reduce the steady stale error precisely to zero. The differences 
are largely academic, beca use tllC error due Lo measuring temperature with any sensor of 
realistic quality wou ld be gre<ltcr than the errors ca used by the differences between B* E and 
B# E. 

Example 9D Missile autopilot In Chap. 6 (Example 6F) we obtained the design of a missile 
autopilot using a pole-placement technique. In this example we will obtain the design using 
the optimization methods of this chapter. 

The state of the system is the difference e between the commanded and the achieved 
angular acceleration, the pitch rate q, and the control surface deflection 0 

x = [e, q, 0)' 

The dynamics are given by 

Ji: = Ax + Bu + Exo 

where Xo is the commanded normal acceleration aNc . The matrices A, B, and E are given in 
Example 6F. 

To use the methods of this chapter it is appropriate to use a performance criterion which 
weights the error e and the control surface deflection 0 

V = f'" (e 2 + R(2) dr 

For this performance criterion 

and R is a scalar. 
The matrix quadratic equation is much too complicated to solve analytically. but it can 

readily be solved by a suitable numerical method. The numerical values of the elements of the 

gain matrix G = R - 1 B' Ii.? are tabulated for a range of control weightings in Table 9D.1. Table 
90.1 also shows the closed-loop poles and the matrices B* E and B # E which constitute the 
feedforward gai n Go for the reference input. 

A graphical representation or the closed-loop poles, as the control weighting R is varied, 
is sllO.wn in Fig. 9.3 . Il i seen that as R becomes very la rge, i.e., the control surface deflection 
is very heavily weighted, the closed-loop poles approach the open-loop poles, as one would 
ex pect. But as the wei.ghting on the control surface is reduced (R is decreased) , the complex 

Table 9D_l Missile autopilot design 

R 0, Oq 0 5 Closed-loop poles B*E B#E 

E5 2.086E-3 -.492 5.818 -360.0, -46.0 ± j6.5 1.0755E-3 1.0786E-3 
5E5 .873E-3 - .235 2.557 -176.4, -42.6 ±j13.4 0.5363E-3 0.5433E-3 

E6 .588E-3 -.173 1.795 -139.7, -38.0 ±jI6.9 0.4070E-3 0.4169E-3 
5E6 .21IE-3 -.085 0.784 -107.5, -25.3 ± j20.4 0.2250E-3 0.2460E-3 

E7 .127E-3 -.063 0.545 -103.7, -20.0 ±jI9.9 0.1 746E-3 0.2047E-3 
5E7 .274E-4 -.0296 0.222 -100.7, -10.8 ±jI7.5 0.088IE-3 O.l457E-3 

E8 .105E-4 -.0205 0.146 -100.3, -8.2 ±jI6.8 0.0602E-3 0.1308E-3 
E9 -.174E-5 -.004618 0.02883 -100.Q3, -3.18 ±jI5.8 0.0112E-3 0.1064E-3 
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Figure 9.3 Locus of complex poles in missile autopilot design as weighting factor is varied. 
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Figure 9.5 Comparison of feedforward gains. 

poles move to the negative open-loop zero on the real axis, which is where we would expect it to 
go in view of our discussion in Note 9.4. The gain variations are illustrated graphically in Fig. 
9.4. 

Note that the gains B* E and B# E are not equal, although they converge as the control 
weighting tends to zero. (Fig. 9.5.) This again is as expected in view of our earlier discussion: 
If the control weighting is not zero, the co t of using co n.tro I. requires that it steady state value 
be reduced from that required to maintain a steady stale error of zero. The discrepancy 
between the feedforwatd gains is largest when the control weighting is large~t, as expected. 
Since the missile is stable, the feedback gains can be reduced to zero, which is what happens 
when the control weighting becomes infinite. But this also reduces the feed forward gain to zero 
and there is no connection between the reference input (the commanded acceleration) and 
missile: The achieved acceleration tends to zero leaving a steady state error equal to the 
commanded acceleration. But it is possible to track the input acceleration perfectly, even without 
feedback, by use of a feedforward gain given by Go = (CA -1 B) - 1 CA - 1 E where A is the 
open-loop dynamics matrix. The numerical value of Go = 0.1064 x 10- 3 is the feedforward gain 
that achieves this condition. 

If zero steady state tracking error is a rigid requirement, then there is no reason for not 
using the gain B'" E as given in the last column of Table 90.1 instead of the gain given by 
8* E. Since these are feedforward gains, they have no effect on the stability of the system. 
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The robustness of the design is of interest. As was the case with the design based on pole 
placement, as considered in Example 6F, we study the locus of roots of the return difference 

I + KG(sI - A)-l B 

on the assumption that the effect of a gain variation is in the overall loop gain rather than in 
the individual sensors. 

For comparison with the pole-placement design we select the gain matrix G correspond­
ing to a control weighting of R = 107 which places the closed-loop poles at s = -20 ±jI9.9 
which is very close to the values chosen in the pole-placement design. For this value of gain 
we find that 

I N (s) 40.35s 2 + 4363s + 57628 
Go(s) = G(sI - A)- B = O(s) = (s + 100)(s2 + 3.33s + 248.) 

40.35(s + 15.4)(s + 92.7) 

(s + 100)(s2 + 3.33s + 248.) 

Note that the apparent zeros of the loop transmission are both in the left half of the s 
plane whereas the pole-placement design had one zero in the right half of the s plane. This 
means that the root-locus does not cross into the right half-plane for any value of K. Thus this 
design has an infinite gain margin. The actual root locus has the appearance shown in Fig. 9.6. 
The root locus has the same general shape as the locus of roots of the closed-loop system 
shown in Fig. 9.3 for various control weighting factors. (Note that Fig. 9.3 is not a standard 
root locus, which is defined as the locus of roots of 1+ KG(s) as K is varied.) This might 
seem surprising at first, but it really is quite reasonable in view of the way the gains G" Gq, 

and G6 vary, as shown in Fig. 9.4. It is observed that they are nearly proportional to each 
other, so that varying K in the root-locus equation has nearly the same effect as varying the 
control weighting matrix R. 

It is worth dwelling further upon the difference between the design of this section and the 
design obtained by pole-placement in Example 6F. The dominant poles in both cases are very 
nearly in the same location (s = -20 ± j20) so the transient responses of both systems would 
be just about the same. Yet the pole-placement design has a finite gain margin while the 
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Figure 9.6 Root locus of return difference of autopilot design with R = 107
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Figure 9'.7 Bode plots for missile autopilot. (a ) Open-loop transmission; ( b) Closed·loop transmission. 

!: 
z 
['!1 

:> 
1" 
D 
C 
:> 
(J 

~ 
-l 
n 
o 
j 
3: 
c 
3: 
() 
o 
Z 
-l 
;t; 
o 
r 
(H 
0'1 
(H 



364 CONTROL SYSTEM DESIGN 

linear-quadratic design of this example has an infinite gain margin. A gain margin of 14 is not 
at all bad, but a gain margin of infinity is better! On the other hand, the present design requires 
feedback of the actuator state 8. The pole-placement design intentionally eliminated this 
feedback path. Is it worth using an extra sensor (to measure 8) for the sake of raising the gain 
margin? In this case probably not, but in other cases it might be. The alternative to adding a 
sensor to measure 8 is to use an observer to estimate 8 using the measured pitch rate and 
normal acceleration. Use of an observer, however, also has the effect of reducing the stability 
margins as we shall see when our discussion of this example resumes. 

The Bode plots for Go(s) = G(sl - A)-l Band Ge(s) = G(sl - AJB are given in Fig. 
9.7. Note that the maximum phase shift of the open-loop transmission is -107°, which 
provides a phase margin of 73°. 

9.7 GENERAL PERFORMANCE INTEGRAL 

Most problems can be formulated with a performance integral of the form (9.3) 
with the integrand being the sum of a quadratic form in x and a second 
quadratic form in u. There are cases, however, in which a cross term 2x'S'u = 
x'S'u + u'Sx is also present in the integral. The optimum gain for this problem 
can be found using the same method as was used in Sec. 9.4. Following exactly 
the same steps as in that section, one obtains the following relation for the 
optimum gain 

where the matrix M satisfies a matrix Riccati equation 

where 

-M = MA + A'M - MBR-IB'M + Q 

A = A - BR- 1S 

Q = Q - S'R-IS 

(9.51) 

(9.52) 

(9.53) 

(9.54) 

The benefit of hindsight-i.e., knowing the result-makes it possible to 
verify it by another method. Let 

(9.55) 

Substitute this control into the general dynamic process, as given by (9.1) to 
obtain 

x = Ax + Bu = (A - BR- I S)x + Bv = Ax + Bv 

The performance integral to be minimized is 

V = fT (x'Qx + x'S'u + u'Sx + u'Ru) dT 

Using (9.55) the integrand becomes 

(9.56) 

(9.57) 

x'Qx + x'S'(v - R-ISx) + (v' - x'S'R-I)Sx + (v' - x'S'R-I)R(v - R-ISx) 

= x'(Q - S'R-IS)x + v'Rv (9.58) 
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Thus minimization of (9 .57) for the original process is equivalent to minimi­
zation of 

v = roo (x'(5x + v'Rv) dr 

for the process 

i = Ax + Bv 

Using the result of Sec. 9.4 the minimum value of V is obtained for 

v = - Ox 

where the gain for v is given by 

G = R - lB'M 

and where M satisfies (9.52). Thus, finally, from (9.55) 

u = - (R-lB'M + R-1S)x = -Ox 

where 0 is given by (9.51). 

9.8 WEIGHTING OF PERFORMANCE 
AT TERMINAL TIME 

(9.59) 

(9.60) 

In control processes of finite time duration, the terminal state x( T) is often as 
important as, or more important than, the manner in which the state is reached. 
Thus a more general performance criterion is 

V = rT 

[x'(r)Qx(T) + u'(T)Ru(r)] dr+ x'(T)Zx(T) (9.61) 

The additional quadratic form x'( T)Zx( T) may be called a terminal penalty­
the cost of not getting to the origin at the terminal time. 

The results of Secs. 9.3 and 9.4 are applicable to this problem except that 
the terminal condition to be used is 

M(T, T) = Z (9.62) 

instead of M( T, T) = O. 
This is seen as follows. Since 

x(T) = cI>c(T, t)x(t) 

the quadratic form x'( T)Zx( T) is also a quadratic form in the initial state: 

x'(T)Zx(T) = x'(t)cI>~(T, t)Z<I> c(T, t)x(t) (9.63) 

Thus 

V = Vet, T) = x'(t)M(t, T)x(t) (9.64) 


