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SHAPING THE DYNAMIC RESPONSE 

6.1 INTRODUCTION 

At last we have arrived at the point of using state-space methods for control 
system design. In this chapter we will develop a simple method of designing a 
control system for a process in which all the state variables are accessible for 
measurement-the method known as pole-placement. We will find that in a 
controllable system, with all the state variables accessible for measurement, it is 
possible to place the closed-loop poles anywhere we wish in the complex s 
plane. This means that we can, in principle, completely specify the closed-loop 
dynamic performance of the system. In principle, we can start with a sluggish 
open-loop system and force it to behave with alacrity; in principle, we can start 
with a system that has very little open-loop damping and provide any amount 
of damping desired. Unfortunately, however, what can be attained in principle 
may not be attainable in practice. Speeding the response of a sluggish system 
requires the use of large control signals which the actuator (or power supply) 
may not be capable of delivering. The consequence is generally that the actuator 
saturates at the largest signal that it can supply. In some instances the system 
behavior may be acceptable in spite of the saturation. But in other cases the 
effect of saturation is to make the closed-loop system unstable. It is usually not 
possible to alter open-loop dynamic behavior very drastically without creating 
practical difficulties. 

Adding a great deal of damping to a system having poles near the imaginary 
axis is also problematic, not only because of the magnitude of the control 
signals needed, but also because the control system gains are very sensitive to 
the location of the open-loop poles. Slight changes in the open-loop pole 
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location may cause the closed-loop system behavior to be very difIerent from 
that for which it is designed. 

We will first address the design of a regulator. Here the problem is to 
determine the gain matrix G in a linear feedback law 

u = -Gx (6.1) 

which shapes the dynamic response of the process in the absence of distur
bances and reference inputs. Afterward we shall consider the more general 
problem of determining the matrices G and Go in the linear control law 

u = -Gx - Goxo (6.2) 

where Xo is the vector of exogenous variables. The reason it is necessary to 
separate the exogenous variables from the process state x, rather than deal 
directly with the metastate 

x = [-~-] (6.3) 

introduced in Chap. 5, is that in developing the theory for the design of the gain 
matrix, we must assume that the underlying process is controllable. Since the 
exogenous variables are not true state variables, but additional inputs that 
cannot be affected by the control action, they cannot be included in the state 
vector when using a design method that requires controllability. 

The assumption that all the state variables are accessible to measurement in 
the regulator means that the gain matrix G in (6.1) is permitted to be any 
function of the state x that the design method requires. In most practical 
instances, however, the state variables are not all accessible for measurement. 
The feedback control system design for such a process must be designed to use 
only the measurable output of the process 

y = ex 

where y is a vector of lower dimension than x. In some cases it may be possible 
to determine the gain matrix Gy for a control law of the form 

(6.4) 

which produces acceptable performance. But more often it is not possible to do 
so. It is then necessary to use a more general feedback law, of the form 

u = -Gx (6.5) 

where x is the state of an appropriate dynamic system known as an "observer." 
The design of observers is the subject of Chap. 7. And in Chap. 8, we shall show 
that when a feedback law of the form of (6.5) is used with a properly designed 
observer, the dynamic properties of the overall system can be specified at will, 
subject to practical limitations on control magnitude and accuracy of 
implementation. 
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6.2 DESIGN OF REGULATORS FOR 
SINGLE-INPUT, SINGLE-OUTPUT SYSTEMS 

The present section is concerned with the design of a gain matrix 

for the single-input, single-output system 

x = Ax + Bu 

where 

B = b = [!:J 
bl<. 

With the control law u = -Gx = -g'x (6.7) becomes 

x = (A - bg')x 

(6.6) 

(6.7) 

(6.8) 

Our objective is to find the matrix G = g' which. places the poles of the 
closed-loop dynamics matrix 

(6.9) 

at the locations desired. We note that there are k gains gJ, g2, . . . , gk and k 
poles for a kth order system, so there are precisely as many gains as needed to 
specify each of the closed-loop poles. 

One way of determining the gains would be to set up the characteristic 
polynomial for Ac: 

lsI - Acl = lsI - A + bg'l = Sk + lljSk-' + ... + llk (6.10) 

The coefficients ll" 112> ... , llk of the powers of s in the characteristic poly
nomial will be functions of the k unknown gains. Equating these functions to 
the numerical values desired for ll\, ... , llk will result in k simultaneous 
equations the solution of which will yield the desired gains gJ, . . . , gk' . 

This is a perfectly valid method of determining the gain matrix g', but it 
entails a substantial amount of calculation when the order k of the system is 
higher than 3 or 4. For this reason, we would like to develop a direct formula 
for 9 in terms of the coefficients of the open-loop and closed-loop characteristic 
equations. 

If the original system is in the companion form given in (3.90), the task is 
particularly easy, because 

A= 0 

o o 

o 
o 

o 
o 

o 

(6.11 ) 
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Hence 

o 
Ac = A - bg' = o 

..... . ... ... . .. . .. .... . .. , ... . 

o o o 

The gains g[, ... , gk are simply added to the coefficients of the open-loop A 
matrix to give the closed-loop matrix Ac. This is also evident from the 
block-diagram representation of the closed-loop system as shown in Fig. 6.l. 
Thus for a system in the companion form of Fig. 6.1, the gain matrix elements 

are given by 
i = 1,2, ... , k 

or 

where 

1 -------
I 
I 
I 

---I 

I 
I 

I 

I 

J 

Figure 6.1 State variable feedback for system in first companion form. 

( 6.12) 

(6.13 ) 
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are vectors formed from the coefficients of the open-loop and closed-loop 
characteristic equations, respectively. 

The dynamics of a typical system are usually not in companion form. It is 
necessary to transform such a system into companion form before (6.12) can be 
used. Suppose that the state of the transformed system is X, achieved through 
the transform~tion 

x= Tx 

Then, as shown in Chap. 3, 

x = Ax + bu 
where 

and b = Tb 

For the transformed system the gain matrix is 

g=a-ii=a-a 

( 6.14) 

( 6.15) 

( 6.16) 

since ii = a (the characteristic equation being invariant under a change of state 
variables). The desired control law in the original system is 

u = -g'x = -g'T-lx = -g'x ( 6.17) 

From (6.17) we see that 

Thus the gain in the original system is 

9 = Tg = T(a - a) (6.18 ) 

In words, .the desired gain matrix for a general system is the difference 
between the coefficient vectors of the desired and actual chat'acteristic equation, 
p[emultiplied by the inverse of the transpose of the matrix T that transforms the 
general system into the companion form of (3.90), the A matrix of which has 
the form (6.11). 

The desired matrix T is obtained as the product of two matrices U and V: 

T= VU ( 6.19) 

The first of these matrices transforms the original system into an intermediate 
system 

(6.20) 

in the second companion form (3.1 07) and the second transformation U 
transforms the intermediate system into the first companion form. 

Consider the intermediate system 

x = Ax + bu (6.21) 

with A and b in the form of (3.107). Then we must have 

A = UAU- I and b = Ub (6.22) 
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The desired matrix U is precisely the inverse or the 
matrix Q of Sec. 5.4. To prove this fact, we must show that 

controllability test 

U - 1A = AU-I 

or 
QA=AQ 

NoW, for a single-input system 

Q = [b, Ab, ... , Ak-'b] 

Thus, with A given by (3.107), the left-hand side of (6.23) is 

o 0 -ak 

1 0 

QA = [b, Ab, ... , Ak-1b] 0 

o 0 ... -QI 

= [Ab, A 2 b, ... , Ak-1b, -akb - Qk-IAb - . .. - akAk-1b] 

The last term in (6.25) is 

(-QkI - ak-IA _ ... - akAk - l)b 

Now, by the Cayley-Hamilton theorem, (see Appendix): 
" 

Ak = -a1Ak- 1 - a2 A k
-

2 
- ••• - aJ 

so (6.26) is Akb. Thus the left-hand side of (6.24) as given by (6.25) is 

QA = [Ab, A 2 b, ... , Akb] = A[b, Ab, ... , Ak-1b] = AQ 

which is the desired result. 

(6.23 ) 

(6.24) 

(6.25) 

(6.26) 

If the system is not controllable, then Q-l does not exist and there is no 
general method of transforming the original system into the intermediate system 
(6.21); in fact it is not possible to place the closed-loop poles anywhere one 
desires. Thus, controllability is an essential requirement of system design by 
pole placement. If the system is stabilizable (i.e., the uncontrollable part is 
asymptotically stable, as discussed in Chap. 5) a stable closed-loop system can 
be achieved by placing the poles of the controllable subsystem where one 
wishes and accepting the pole locations of the uncontrollable subsystem. In 
order to apply the formula of this section, it is necessary to first separate the 
uncontrollable subsystem from the controllable subsystem. 

The control matrix b of the intermediate system is given by 

b = Ub (6.27) 
We now show that 

(6.28) 
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Multiply (6.28) by Q to obtain 

- k - I 0 [ll Qb = [b, Ab, ... , A b ] ~ = b 

which is the same as (6.27), since Q-I = U. 
The final step is to find the matrix V that transforms the intermediate 

system (6.21) into the final system (6.15). We must have 

x = Vi (6.29) 

For the transformation (6.28) to hold, we must have 

x = VAV- I 

or 

V - IX = AV- I (6.30) 

The matrix V- I that satisfies (6.30) is the transpose of the upper left-hand 
k-by-k submatrix of the (triangular Toeplitz) matrix appearing in (3.103) 

V- I = [~ ... ~: ..... .. ::=:] = w 
o 0 .. , 1 

(6.31 ) 

To prove this, we note that the left-hand side of (6.30) is 

0 0 0 -ak 

1 a l ak-2 0 

0 ak-3 0 (6.32) 

o 0 ... o 

(Note that the zeros in the first row of V-IX are the result of the difference of 
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two terms QI - Q[, Q 2 - Q2, etc.) and the right-hand side of (6.30) is 

0 0 -Qk Q I Qk-I 

I 0 -Qk-I 0 Qk - 2 

AV- I = 0 -Qk - 2 0 0 Qk-3 

0 0 -Qk 0 0 

0 0 0 -Qk 

1 Q I Qk - 2 0 

0 Qk- 3 0 

o 0 . . . 1 o 

which is the same as (6.32). Thus (6.30) is proved. 
We also need 

We will show that 

Consider 

with 

b = V-If) = [~ . . ? ..... ::=:]I~] = [~] 
o 0 ... L lo 0 

Thus;; and f) are the same. 
The result of this calculation is that the transformation matrix T whose 

transpose is needed in (6.18) is the inverse of the product of the controllability 
test matrix and the triangular matrix (6.31). 

The above results may be summarized as follows. The desired gain matrix 
g, by (6.18) and (6.19), is given by 

g = (VU)'(a - a) (6.33) 

where 

V= W- I and 

Thus 
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Hence (6.33) becomes 

g = [( Qw)']- I(a - a) (6.34) 

where Q is the controllability test matrix, W is the triangular matrix defined by 
(6.31), a is the vector of coefficients for the desired (closed-loop) characteristic 
polynomial, and a is the vector of coefficients of the open-loop system. 

The basic pole-placement formula (6.34) was first stated by Bass and 
Gura.[ 1] It can be derived by other methods as discussed in Note 6.1. 

Now that we have a specific formula for the gains of a controllable, 
single-input system that will place the poles at any desired location, several 
questions arise: If the closed-loop poles can be placed anywhere, where should 
they be placed? How can the technique be extended to multiple input systems? 
We shall address these questions and others after considering several examples. 

Example 6A Instrument servo A dc motor driving an inertial load constitutes a simple 
instrument servo for keeping the load at a fixed position. 

As shown in Chap. 2 (Example 2B), the state-space equations for the motor-driven inertia 
are 

O=w 
w = -aw + {3u 

(M.l) 

(M.2) 

where ° is the angular position of the load, w is the angular velocity, u is the applied voltage, 
and a and f3 are constants that depend on the physical parameters of the motor and load: 

{3=K/JR 

If the desired position 0, is a constant then we can define the servo error 

e = 0-0, 

Then Ii = 0 - 0, = w (0, = const) (6A.3) 

and (6A.3) replaces (6A.l) to give 

(6A.4) 

The angular position measurement can be instrumented by a potentiometer on the motor 
shaft and the angular velocity by a tachometer. Thus, the closed-loop system would have the 
configuration illustrated in Fig. 6.2. Note that the position gain is shown multiplying the 
negative of the system error which in turn is added to the control signal. This is consistent with 
the convention normally used for servos, wherein the position gain multiplies the difference 
0, - ° between the reference and the actual positions. The quantity e defined above (6A.3) is 
the negative of the system error as normally defined in elementary texts. 

The characteristic polynomial of the system is 

lsI - AI = Is -[ I 
o s + a 

Thus 

a = [~J 
The controllability test matrix Q and the matrix Ware given respectively by 

Q = [b, Ab] = [0 . f3 ] 
{3 -a{3 
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Tachometer Potentiometer 

u 
DC motor 

w 

Velocity gain 

8 
-e 

.... ---0, 
Position gain 

Figure 6.2 Implementation of an instrument servo, 

Thus 

QW = [0 f3] = (QW), 
, f3 ° 

and 

[(QW),)-I = [0 II f3] 
II f3 ° 

Thus the desired gain matrix, by the Bass-Gura formula (6.34), is 

[
0 II f3] [ a I - a] [ a21 f3 ] 

g = 1/f3 ° a2 = (a l - a)lf3 (6A.5) 

where al and a2 are the coefficients of the desired characteristic polynomial. 
While the above calculation illustrates the general procedure, the gains could have been 

more easily computed directly. For a control law of the form 

(6AA) becomes e = w 

which has the closed-loop matrix 

with the chara'cteristic equation 

lsI - Acl = S2 + (a + g2f3)S + glf3 

Thus 



232 CONTROL SYSTEM DESIGN 

or 
g2 = (a, - O')/f3 

which is the same as (6A.S). 
Note that the position and velocity gains g, and g2, respectively, are proportional to the 

amounts we wish to move the coefficients from their open-loop positions. The position gain g, 
is necessary to produce a stable system: a2 > O. But if the designer is willing to settle for 
Q, = 0', i.e., to accept the open-loop damping, then the gain g2 can 'be zero. This of Course 
eliminates the need for a tachometer and reduces the hardware cost of the system. It is also 
possible to alter the system damping without the use of a tachometer, by using an estimate w 
of the angular velocity w. This estimate is obtained by means of an observer as discussed in 
Chap. 7. 

Example 68 Stabilizatioo of 311 inverted pendulum An inverted pendulum an readily be 
stabilized by a closed-loop feedback system just as a person of moderate dexterity can do it. 

A po sible control system implementation is shown in Fig. 6.3, for a pendulum Con 
stra.ined to rotate about a shaft at its bollom point. The actuator i 8 de motor. TIle angular 
posi.tion of the pendulum, being. equal [0 the position of the shaft I which it is attached, is 
measured by means of a potentiometer. The angu lar velocity in this case can be measured by 
a "velocity pick-ofti" at the top of the pendulum. Such a device could consist of a coil of wire 

Velocity pick-off 

o 

u 

Figure 6.3 Implementation of system to stabilize inverted pendulum. 
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in a magnetic field created by a small permanent magnet in the pendulum bob. I he induced 
voltage in the coil is proportional to the linear velocity of the bob as it passes the coil. And 
since the bob is at a fixed distance from the pivot point the linear velocity is proportional to 
the angular velocity. The angular velocity could of course also be measured by means of a 
tachometer on the dc motor shaft. 

As determined in Prob. 2.2, the dynamic equations governing the inverted pendulum in 
which the point of attachment does not translate is given by 

iJ=w 

w = 0 2 0 - aw + {3u 
(68.1 ) 

where a and {3 are given in Example 6A, with the inertia 1 being the total reflected inertia: 

1 = 1m + mf 

where m is the pendulum bob mass and I is the distance of the bob from the pivot. The natural 
frequency 0 is given by 

02=~= 9 
1 + ml2 I + 1/ ml 

(Note that the motor inertia 1m affects the natural frequency.) 
Since the linearization is valid only when the pendulum is nearly vertical, we shall assume 

that the control objective is to maintain 0 = o. Thus we have a simple regulator problem. 
The matrices A and b for this problem are 

The open-loop characteristic polynomial is 

I

s -1 I lsI - AI = 2 
-0 S + a 

Thus 

a2 = _02 

The open-loop system is unstable, of course. 
The controllability test matrix and the W matrix are given respectively by 

W=[~ ~J 
(which are the same as they were for the instrument servo). And 

[( QW)T
i = [1~ (3 1~{3 ] 

Thus the gain matrix required for pole placement using (6.34), is 

Example 6C Control of spring-coupled masses The dynamics of a pair of spring-coupled 
masses, shown in Fig. 3.7(a), were shown in Example 31 to have the matrices 

A =l~ 0 o 0 

o 0 

o 
1 

o 
-KIM 
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The system has the characteristic polynomial 

D(s) = S4 + (K I M)sZ 

Hence Qz =K I M. 

The controllability test and W matrices are given, respectively, by 

lo ° 
o ° Q = 0 I 

I 0 

Multiplying we find that 

o 

° - KIM 

QW = (QW) ' = (QW)-I = 

KIM 

° 
o 

lo ° 0 II o 0 1 0 

o 100 

I 000 

(6C. I) 

(6C.2) 

(This rather simple result is not really as surprising as it may at first seem. Note that A is 
in the first companion form but using the right-to-Ieft numbering convention. If the left-to-right 
numbering convention were used the A matrix would already be in the companion form of 
(6.11) and would not require transformation. The transformation matrix T given by (6C.2) has 
the effect of changing the state variable numbering order from left-to-right to right-to-Ieft, and 
vice versa.) 

The gain matrix 9 is thus given by 

9 =l~ ~ 0 ~Jf-z <~/1wl = [ . :: -l ° I 0 0 Q 3 Q2 - KI M 

I 0 0 0 114 III 

A suitable pole" constellation" for the closed-loop process might be a Butterworth pattern 
as discussed in Sec. 6.5. To achieve this pattern the characteristic polynomial should be of the 
form 

Thus 

Thus the gain matrix 9 is given by 

ii l =(I+J3)!l 

iiz = (2 + J3)!lz 

ii) = (1 + J3)!l) 

6.3 MULTIPLE-INPUT SYSTEMS 

If the dynamic system under consideration 

x = Ax + Bu 
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has more than one input, that is, B has more than one column, then the gain 
matrix G in the control law 

u = -Gx 

has more than one row. Since each row of G furnishes k gains that can be 
adjusted, it is clear that in a controllable system there will be more gains 
available than are needed to place all of the closed-loop poles. This is a benefit: 
the designer has more flexibility in the design than in the case of a single-input 
system; it is possible to specify all the closed-loop poles and still be able to 
satisfy other requirements. How should these other requirements be specified? 
The answer to this question may well depend on the circumstances of the 
particular application. One possibility might be to set some of the gains to zero. 
For example, it is sometimes possible to place the closed-loop poles at locations 
desired with a gain matrix which has a column of zeros. This means that the 
state variable corresponding to that column is not needed in the generation of 
any of the control signals in the vector u, and hence there is no need to measure 
(or estimate) that state variable. This simplifies the resulting control system 
structure. If all the state variables, except those corresponding to columns of 
zeros in the gain matrix, are accessible for measurement then there is no need 
for an observer to estimate the state variables that cannot be measured. A very 
simple and robust control system is the result. 

Another possible method of selecting a particular structure for the gain 
matrix is to make each control variable depend on a different group of state 
variables which are physically more closely related to that control variable than 
to the other control variables. 

Still another possibility arises in systems which have a certain degree of 
structural symmetry and in which it is desired to retain the symmetry in the 
closed-loop system by an appropriate feedback structure. 

The following example illustrates one method of selecting the gain matrix. 

Exumple 6D Distillution column For 'the disti lla tion colu mn of Example 4A, ha ving the 
block-diagra m of Fig. 4.2, we saw in Exa mple 5G th at bo th input are needed in o rder for 
the system to be controlla bl e, because the re a re redu nd ant pol es at the origi n (due to the 
integrators) from either tlll , o r tl112. lf there weTe o ll ly one integra to r present, it is easy to see 
that the system wo uld be controllabl e from toll , a lone. Th is sugge ' ts a gai n structu re in which 
tlll , depends on x" ;(2, a nd X3, and tlll2 depends on x •. This give four adjustable ga ins fo r the 
c1osed ·loop fourth-order sys tem and we would ex pect LO be able to locate the closed-loop 
poles at whatever locations are desired. 

Thus we use a gain matrix of the form 

o = [go' g2 g3 0 ] 
o 0 g4 

(6D.I) 

With the A and B matrices as given by (2G.5) it is found that the closed-loop dynamics 
matrix is 

[ " - bny, 
- b"g2 - b"g3 

-L.J A = A - BO = a2, 
a Z2 0 

c 0 a32 0 

0 0 0 -b.2g4 


