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Peculiarities of insect vision

Small interocular separation

Therefore, stereo vision 18
difficult

Insects rely heavily on
1mage motion cues to
infer object distance,
perceive the world in 3-D
and navigate 1n it




Bees negotiate narrow gaps by balancing the image velocities in the two eyes

Kirchner & Srinivasan
Naturwissenschaften (1988)

Srinivasan, Lehrer, Kirchner & Zhang
Vis. Neurosci. (1991)




Centering response in budgerigars

P. Bhagavatula, C. Claudianos, M. Ibbotson, M.V. Srinivasan

Current Biology (2011)
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Visual control of flight speed - bees
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Control of flight speed

Speed of flight 1s regulated
by holding the global
image velocity constant

Srinivasan, Zhang, Lehrer & Collett
J. Exp. Biol. (1996)




Battling
headwind
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How does a bee perform a smooth, grazing landing ?



Landing parameters
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Reconstruction of landing trajectories in 3d

land18
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Srinivasan, Zhang, Chahl, Barth & Venkatesh, Biol. Cybern. (2000)



Horizontal flight speed, cm/s

Horizontal flight speed, cm/s

Horizontal flight speed versus height
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Rules for landing

1. Ground image speed 1s held constant

V(1) = w.h(1)

2. Instantaneous descent speed Vd(t) 1s coupled to
instantaneous forward flight speed V(t):




Rules for landing

Forward flight speed V', (¢) is proportional to instantaneous height/:(¢)
above ground:

V,(t) = w.h(t)

where (U is the angular velocity of the image in radians/sec.

* Make descent speed Vd (t ) proportional to forward flight speed Vf (?) ;

__dh@) _
Vi) ==== =BV, (0)

Inserting (1) into (2),

() _

B.w.h(t) + 0

which can be solved for h(f ) to yield
h(t) = h(t,).e” P01

where /(%) is the height at the initial time =7,

= Height decreases exponentially with time

Inserting (4) into (1),

V(1) = @.h(ty).e”
6)

= Forward speed decreases exponentially with time

Inserting (5) into (2),

V. (t) = B.w.h(ty).e” "
©)

= Descent speed also decreases exponentially with time

Dividing (6) by (5),

v _
V(o)
(7

as required by the descent constraint.

* Cumulative horizontal distance travelled (Hordist) -

®)

Hordist =fo(t).dt =fw'h(to)-e_(”ﬂ‘("’“).dt

Integrating, we get

Hordist = M[l _ e—w.B.(t_to)]
B
©)

= Horizontal distance travelled is a saturating exponential function of

time




Model prediction 1:

h(t) = h(t)).e """

= Height decreases exponentially with time



Test of prediction 1

h = 30.3469
exp(-0.17672) t

Frame number, t

land21
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Srinivasan, Zhang, Chahl, Barth & Venkatesh, Biol. Cybern (2000)



Model prediction 2:

Hordist = h(ty) [ _ @B

B

= Cumulative horizontal distance travelled
1S a saturating exponential function of time



Test of Prediction 2
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Projected time to touchdown

= (.22 sec

Is constant through the landing
process!



Work with Emily Baird, Norbert Boeddeker




Distance decreases exponentially as a function of time

Stat 6 arms

Z=-273.48+519.7*exp(-0.0028")

£
£
N
c
S
?
o
o

11 flights

r r
300 400

Time (t), msec




Position (Z), mm

250

200

150

100

50

-100

-150

-200

L

Expanding 1 rps
— Contracting 1rps
_ Static

250" i i
0 200 400

r
600

Time (t), msec

r
800




Constant approach P %

speed

200 degisec )
\

0
S~
o
)
2
>
E=
|9
ke,
o
>
S
L
S
<)
c
©
£
S
£
<
©
=

100 150
Distance to disc (mm)




Biologically inspired robotics



Bees negotiate narrow gaps by balancing the image velocities in the two eyes

Kirchner & Srinivasan
Naturwissenschaften (1988)

Srinivasan, Lehrer, Kirchner & Zhang
Vis. Neurosci. (1991)




This robot, about the size of
a skateboard, navigates along
corridors by balancing optic
flows on the left and the right

Weber, Chahl, Srinivasan & Venkatesh (1997)
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Gantry -based,
insect-inspired
navigation
system emulates
flight 1n realistic
terrain

Navigation in 3-D




Navigation in 3-D(contd.)

Development and
testing of
algorithms for
landing, terrain
following, gorge
following,
obstacle
avoidance and
point-to-point

navigation
Chahl & Srinivasan (2000b)
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Optic Flow
Video computation
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* GPS can be replaced with any
suitable ground speed measure.



Field testing of forward flight controller

View from
helicopter

on actual helicopter. A safety pilot observes from the
back of the chase vehicle, poised to take control from
the automatic controller for take off, landing and in
case of an emergency.



Flight test results for helicopter at 50 km/hr
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Measurement of image motion:
Feature tracking

Frame 1 Frame 2



Measurement of image motion:
Correlation/Image matching




A Velocity \/ Gradient scheme
4—

fix+V(t+At)]
N\
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f V. (x+ V1) . Local temporal derivative

Local spatial derivative
~ = f'(x+V1)
0x
%/%_V.f’(x+VI)_V ﬁ

f’(x + V l—) Limb JO & Murphy JA: Comput Graph Image Process (1€
* Horn BKP & Schunck: Artif Intell (1981)




Intensity

Image Interpolation Scheme

MV Srinivasan: Biol. Cybern. (1994)
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Image Interpolation
Algorithm — 2D image motion
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