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Schedule

Week | Date Lecture (M: 12-1:30, 43-102)

1 23-Jul |Introduction

Representing Position & Orientation &  Statg
2 30-Jul |(Frames, Transformation Matrices &  Affing
[Transformations)

6-Aug[Robot Kinematics and Dynamics
13-Aug [Robot Dynamics & Control

20-Aug [Obstacle Avoidance & Motion Planning
27-Aug [Sensors, Measurement and Perception
3-Sep |Localization and Navigation

10-Sep [State-space modelling & Controller Design
17-Sep |Vision-based control

24-Sep Study break

10 1-Oct |[Uncertainty/POMDPs

11 8-Oct |Robot Machine Learning

12 | 15-Oct |Guest Lecture

13 | 22-Oct |Wrap-up & Course Review
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Recap from Last Week [1]
» A position vectors specifies the

location of a point in 3D (Cartesian) space D
Pz

B A

Dx Pz
— pr - Apy
B D2 Apz

» BUT we also concerned with its orientation in 3D space.
This is specified as a matrix based on each frame’s unit vectors

Recap from last week [2]...

» The components of a rotation matrix are
the unit vectors projected onto the unit directions of the reference frame

sR - (b)ip (b)ip (b2)FEp
(az)ia iB-1A JB-'A kp-ia
(ay) ja iB-JjA JB-JA kB-JA
(az) ka iB-ka Jp-ka kp-ka




Recap from Last Week [3]

Rotation is orthonormal ..
- the rows are {A} written in {B}

A Anp—
BR = 4RI = 4R

-> The of a rotation matrix inverse = the transpose

R- Rl =1

-+ of normality = the determinant =1

det (R) =1

Recall from Last Week [4]...

* In many Kinematics * In many Engineering
References: Applications:
A7z
<_> X pitch y
roll * \’/‘
roll =
>
1o,y
\/pitch |
s>
yaw
(o vt
-> Be careful:

This name is given to other conventions too!




Coordinate Transformations [1]

+ Translation Again:
If {B} is translated with respect to {A} without rotation, then itis a

vector sum
{B}
Ap=4p 4 Bp .,
2, [
//'/ AP, Ye
/’///’ XB

Coordinate Transformations [2]

+ Rotation Again:

{B} is rotated with respect to {A} then
use rotation matrix to determine new components

Ap = 4RPP ® @
+ NOTE: Zs 4a
— The Rotation matrix’s subscript
matches the position vector’s Bp
superscript Yo

Ap — A RlBl X
P = {pRVIP %/
— This gives Point Positions of {B} ORIENTED in {A}




Coordinate Transformations [3]

» Composite transformation:
{B} is moved with respect to {A}:

APp=4Pp +4RPP ®

Ls

Homogenous Coordinates

D= | ppx PPy PPz P

» pisascaling value




Homogenous Transformation

AR “p
v P

« vy isaprojective transformation

« pisascaling value

General Coordinate Transformations [1]

» A compact representation of the translation and rotation is known as the
Homogeneous Transformation

4R 1Pp

Am
BT = 0 00 1

 This allows us to cast the rotation and translation of the general
transform in a single matrix form

Bp
1

Ap

A
1 | =BT




General Coordinate Transformations [2]

Fundamental orthonormal transformations can be represented in this form too:

100 u

T7'KH7S(H, v, W) = 0 l O v

001w

¥ 0001

//7 )
;6

co 0sd 0
0100
—s$ 0 cd 0
0 001

Rory(¢) =

X

//7 ‘
e
10 00
Rorx(0) = 0cBb—s00
056 cO6 0
‘Z 00 0 1
//7 ’y
i
cy —sy 00
Rotz(y) = SV cv 00
0O 0 10
0 0 01

General Coordinate Transformations [3]

« Multiple transformations compounded as a chain

Bp = g1°p
Ap = 4TPP
— AmqpBmpC
= 4TETCP
= AT°P

A
CT_oo

ARBR  1Pp+ 4RPP(

1




Projective Transformations ...

Grou Matrix Distortion Invariant properties
p prop:
Concurrency, collinearity, order of contact:
Project; hir his haa / intersection (1 pt contact); tangency (2 pt con-
i Ay 1l - N .
81(1)-](;‘“ e hoy  has  Tiag - tact); inflections
ao hiay gz has i (3 pt contact with line); tangent discontinuities
and cusps. cross ratio (ratio of ratio of lengths).
. o Parallelism, ratio of areas, ratio of lengths on
. 11 Gy1p i T s . . . P
Affine P a , S collinear or parallel lines (e.g. midpoints), lin-
o g t i - . .
& dof '6' |%2 ]-" A ear combinations of vectors (e.g. centroids).
) . The line at infinity, 1...

R ST . . .
Similarity ~'.-7--1:1 Ratio of lengths, angle. The circular points, I, J
4 dof ' ”“] (see section 2.7.3).

Euclidean { 1

L I o Length, area

3 dof L 0

p.44, R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision

LGl

Projective Transformations &

Other Transformations of 3D Space

Group Matrix Distortion Invariant properties
) g Intersection and tangency of sur-
Projective Ar i faces in contact. Sign of Gaussian
15 dof viow e
curvature.
Parallelism of planes, volume ra-
il At . . : .
’;‘P;nf‘;, { o 1 } tios, centroids. The plane at infin-
< dof ity, T, (see section 3.5).

The absolute conie, Q...

Similarity sR ot
{see section 3.6).

7 dof

Volume.

Euclidean Rt
6 dof

p.78, R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision
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Generalizing

Special Orthogonal & Special Euclidean Lie Algebras
« SO(n): Rotations

S0(n) = {Re B™" : RRT = I, det R = +1}.

; ) ” . 8
N ~py Wl -~ -2, 3
exp(@f) = e*" = T + 60 TRy

« SE(n): Transformations of EUCLIDEAN space
SE(n) :==R" % 50(n).

SEB3) ={(p.R):peB* Re 503} =R x S0(3).

Screw Displacements

« Comes from the notion that all motion
can be viewed as a rotation
(Rodrigues formula)

Click tc LOQKINSIDE}
« Define a vector along the axis of motion
(screw vector)
— Rotation (screw angle)
— Translation (pitch)
— Summations - via the screw triangle!




Denavit Hartenberg [DH] Notation

« J. Denavit and R. S. Hartenberg first proposed the use of homogeneous
transforms for articulated mechanisms

(But B. Roth, introduced it to robotics)

« A kinematics “short-cut” that reduced the number of parameters by
adding a structure to frame selection

 For two frames positioned in space, the first can be moved into
coincidence with the second by a sequence of 4 operations:
— rotate around the x;_, axis by an angle o;
— translate along the x;; axis by a distance g
— translate along the new z axis by a distance d;
— rotate around the new z axis by an angle 6,

10



Denavit-Hartenberg Convention

« link length a; the offset distance between the z; ; and z; axes along the x;
axis;
+ link twist o; the angle from the z;_, axis to the z; axis about the x; axis;

; joint j+1
joint | qnd

base

Art cloP. Corke

« link offset d; the distance
from the origin of frame i-1
to the x; axis along the z;
axis;

 jointangle 6; the angle
between the x;_; and x; axes
about the z; ; axis.

DH: Where to place frame?

1. Align an axis along principal motion
1. Rotary (R): align rotation axis along the z axis
2. Prismatic (P): align slider travel along x axis

2. Orient so as to position x axis towards next frame

3. 6 (rot 2) > d (trans z) > a (trans x) 2 (rot x)

11



Denavit-Hartenberg - Rotation Matrix

 Each transformation is a product of 4 “basic”
transformations (instead of 6)

i_lA.t- =Rotzjgz.T’mnsz,diTm,nsx,ai Rotz q,

[co, —s¢, O O] [1 O O O][1 O O g
_|%s;, ¢ 00|01 00]|010O0
O 0 10/|0014d||0010
O O 01|00 0 1]J]|00O01
1 0 0O O
0 co Sa; O
0 sq; ca; O
0 O 0 1
[co, —so,ca; S0,50; aicy
— 89? c@lca] —(Zgi;_S,g‘7 a;Sg
0 Sy Coy; d;
0 0 0 1

DH Example [1]: RRR Link Manipulator

1. Assign the frames at the joints ...
2. Fill DH Table ...

Link | & o d; ;
1 L, 0 0 1
2 L, 0 0 0,
3 Ly 0 0 0,
C, -S4 0 Lg, C, S, 0 LG, C, S, O
o So Cy O LiSy|i, S, C O LsS,|,, |S, C O
A 0 0 1 o0 " 0 0 1 o0 A 0 0 1
0o 0 0 1 0 0 0 1 0 0 O
Ty ="A"AA,

0 LGy +LoCy, + LGy,

_| %4 G O LiSy+LoSg, +LiSy,
1 0
0

1




DH Example [2]: RRP Link Manipulator

-
)

1. Assign the frames at the joints ...
2. Fill DH Table ...

Link | a Q; d; 0,
1 L, 0 0 6,
2 L, 0 0 0,
3 Ly 0 0 0
Cy =S4 0 Lgc, C, —S, 0 Lg, 100
on _|Sa Ca 0 Lsy |, S, €, 0 Ls, |, 010
A 0 0 1 0 A 0 0 1 0 A 001
0 0 0 1 0 0 0 1 000
= AA A
Co =So, 0 Ly +(LrL)ey,
_|sa G O Ls(L+l)s,
0 0 1 0
0 0 0 1

DH Example [3]: Puma 560

» “Simple” 6R robot exercise for the reader ...

Link a; [ d; 6
1 0 0 0 e,
2 0 -1t/2 0 0,
3 L, 0 D, 0,
4 Ly |-n/2| D, 0,
5 0 n/2 0 0,
6 0 |-=/2| O 0

Z
Image: J.. Craig, Iniroduction. o Robotics,
39 Ed. 2005
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DH Example [3]: Puma 560 [2]

c1 —s1 O

0

0. _ |8 e 0O
A=19 o 10
1

c3 —S83 0 L2
24 _ |83 ¢ 0 0 | 3, _
A3=109 0 1 45|
0O 0 0 1

C4q —S85 0 L3
0 0 1 da
—s5 —c5 0 O
0 0 0 1

0T = 04114524534, A55 A

METR 4202: Robotics 6 August 2012 - 27
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Demonstration: Matlab & Solidworks

METR 4202: Robotics 6 August 2012 - 28
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Modified DH

« Made “popular” by Craig’s Intro. to Robotics book
« Link coordinates attached to the near by joint

jointj

jointj-1
base E
link j
link j-1
tool
1Zj 1 2
Yj-1

Art c/o P. Corke

°a (trans x-1) 2a (rot x-1) >0 (rot 2) > d (trans z)

Modified DH [2]

« Gives a similar result
(but it’s not commutative)

= i_lAZ‘ = R, (ai—l) T (ai_l) R (0;) Tx (d;)

 Refactoring Standard - to Modified

{1z (01) 1%z (d1) T (a1) Ra (1)} - {1z (02) Tz (d2) T (a2) Ra (a2)} - {1}z (03) 1z (d3)}
DH1 DH> End Effector

= {R:(01) Tz (d1)} - {Tx (a1) Rz (1) Rz (02) T (d2)} - {1z (a2) Rz (a2) Rz (03) T (d3)}
Base MOH, MDH,

15



Forward Kinematics [1]

« Forward kinematics is the process of chaining
homogeneous transforms together. For example to:
— Find the articulations of a mechanism, or
— the fixed transformation between two frames which is known in
terms of linear and rotary parameters.
« Calculates the final position from
the machine (joint variables)

« Unique for an open kinematic chain (serial arm)

« “Complicated” (multiple solutions, etc.) for a closed
kinematic chain (parallel arm)

16



Forward Kinematics [2]

 Can think of this as “spaces”:

— Operation space (X,y,z,0,,5,Y):
The robot’s position & orientation X =
— Joint space (0, ... 0,):
A state-space vector of joint variables .
q =

e— |
s

G +—

qi<--

Workspace

Joint Limits

Forward Kinematics [3]

+ Consider a planar RRR manipular

effector pose:
p »\(

x =Licosf; + Locos(61+62) + ...
Ly cos (91 + 0>+ 93)

y=Lq1sinf; 4+ Lysin (01 +62) + ...
L3 sin (91 + 6> + 93)

+ Thisisn’t too difficult to determine
for a simple, planar manipulator. BUT ...

« Given the joint angles and link lengths, we can determine the end\e
1.3

17



Forward kinematics [4]:

The PUMA 560t _ _
« What about a more complicated mechanism?

Nz Sz Oz Pr
Ty Sy Gy Py
N, S: @ Pa
o0 01

§) — sulsqepcq + cusg)

5) + culsucscs + cuss)

3g) — 81(—S41C586 + Cule)

Sa ) + c1(—sucss6 + cuca)

sy (dsicas

dsf_C:JCr S

Inverse Kinematics

« Forward: angles = position

x =1(0)

Inverse: position = angles P .
0 = f1(x)

Analytic Approach

Numerical Approaches:

— Jacobian: J=9% - sq~ J 1z
q
— JT Approximation: r=JT.F - Aqx~JT Az
+ Slotine & Sheridan method

— Cyclical Coordinate Descent




Inverse Kinematics

* Inverse Kinematics is the problem of finding the joint
parameters given only the values of the homogeneous
transforms which model the mechanism
(i.e., the pose of the end effector)

» Solves the problem of where to drive the joints in order
to get the hand of an arm or the foot of a leg in the right
place

* In general, this involves the solution of a set of
simultaneous, non-linear equations

» Hard for serial mechanisms, easy for parallel

Multiple Solutions

» There will often be multiple solutions for a particular inverse kinematic
analysis

 Consider the three link manipulator shown. Given a particular end
effector pose, two solutions are possible

» The choice of solution is a function of proximity to the {
limits on the joint angles and possible obstructions in the

19



Inverse kinematics

« What about a more complicated mechanism?

e Sy Ox P
Oy = 9T, ‘T, 2T, 5T, 3T, °T = ( Ty Sy Gy Py ]

n s @ p:

o 0 01
ey(eon(cacsts — Su%) — Sma8sca) — S1(sucsca + Cu%)
s(c2a(cacsos — 548g) — S235s50e) + coL(Sucsts + casa)
—S23(CuC508 — S486) — C2385Ca
c1(—cas(cucsse + suca) + S2:5556) — S1(—54cs56 + cuca)
s1{—cas(cacsse + Sice) + 5235856 + c1(—suc558 + cace)
523(c4Cr8g + 840a) — C23555g
e1(230455 + S230s) — 55,85
51(CoCy 85 4 S2a0s) + €15455
—S330485 + C2a0s)
cu(ds(cascass + s2cs) + s2ady + aaces + azcz) — sy(desyss + da)
s1(dalcaseass + s2ses) + sasdy 4 ascas + azcz) + auldasyss + da)

dalcaacs — Spacuss) + czady — azs2s — agss

Solution Methods

« Unlike with systems of linear equations, there are no
general algorithms that may be employed to solve a set of
nonlinear equation

 Closed-form and numerical methods exist
« We will concentrate on analytical, closed-form methods

« These can be characterized by two methods of obtaining
a solution: algebraic and geometric

20



Inverse Kinematics: Geometrical Approach

» We can also consider the geometric
relationships defined by the arm

Inverse Kinematics: Algebraic Approach

»  We have a series of equations which define this system
+ Recall, from Forward Kinematics:

Co1p3 —S0103 O Licg, + Laco, + L3cy,,,

0T3 = 89123 C9123 0 L]_.S‘gl + L2$912 + L359123
0 0 1 0

0 0 0 1

» The end-effector pose is given by

¢y —S¢ 0 x
O, — | 8¢ Co 0 vy
Ts 0 0 10
0O 0 01

Equating terms gives us a set of algebraic relationships b “

21



No Solution - Singularity

+ Singular positions:

y

Aol

A
\

» An understanding of the workspace of the manipulator is impor%\_ﬁ_'

» There will be poses that are not achievable
» There will be poses where there is a loss of control \

+ Singularities also occur when the
manipulator loses a DOF

— This typically happens
when joints are aligned
— det[Jacobian]=0

22



Mobile Platforms

» The preceding kinematic relationships are also important
in mobile applications

« When we have sensors mounted on a platform, we need
the ability to translate from the sensor frame into some
world frame in which the vehicle is operating

 Should we just treat this as a P(*) mechanism?

LGl

Mobile Platforms [2]

« We typically assign a frame to
the base of the vehicle

« Additional frames are assigned
to the sensors

« We will develop these
techniques in coming lectures

o
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Summary

« Many ways to view a rotation
— Rotation matrix
— Euler angles
— Quaternions
— Direction Cosines
— Screw Vectors

« Homogenous transformations
— Based on homogeneous coordinates

Cool Robhotics Share

Light Field Video Stabilization
ICCV 2009

Brandon M. Smith?, Li Zhang?, Hailin Jin2, Aseem Agarwala?

1UW-Madison Graphics and Vision Group W

2 Adobe Systems Incorporated

supplementalvideo with narration
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