

1 2 3	23-Jul 30-Jul	Introduction Representing Position & Orientation & (Frames, Transformation Matrices & Transformations)	State Affine
2	30-Jul	Representing Position & Orientation & (Frames, Transformation Matrices & Transformations)	State Affine
3	6-4119		
	0-Aug	Robot Kinematics and Dynamics	
4	13-Aug	Robot Dynamics & Control	
5	20-Aug	Obstacle Avoidance & Motion Planning	
6	27-Aug	Sensors, Measurement and Perception	
7	3-Sep	Perception (+ Prof. S. LaValle)	
8	10-Sep	Computer Vision & Localization (SFM/SLAM)	
9	17-Sep	Optical Flow (Prof. M. Srinivasan)	
	24-Sep	Study break	
10	1-Oct	Public Holiday	
11	8-Oct	Localization and Navigation	
12	15-Oct	Control/Planning Under Uncertainty	
13	22-Oct	Course Review & Case Study	

 Subjects: Rotation Matrices: 10 % Kinematics: 15 % Dynamics & Motion Planning: 25 % Vision: 25 % State-Space Control: 25 % 	Senser Two Prod Executions, 2021 VICTOR Victor Display Control Contr	222 Advanced Control & Robotics
 Material for the exam will come from: Tutorial and Tutorial Problems: 70% Lectures: 20% Laboratories: 10% 	Langence for the Cardon Cardon Cardon Cardon Cardon Cardon Cardon Cardon Cardon Cardon Cardon Cardon Cardon Cardon Car	Soties To Earning Use Only Operation Use
 Problem Types: Short answer Problem based Write solutions in the Answer Booklet(s) 	Calculars: An exclusion semificiar -unervanisti Calculare Semificiar Calculare Calculare Calculare Semificiare Calculare Calculare Calculare 1: Calculare Calculare Calculare 2: Calculare Calculare Calculare 2: Calculare Calculare Calculare 2: Calculare Calculare 2: Calculare Calculare 2: Calculare Calculare 2: Calculare Calculare 2: Calculare Calculare 2: Calculare 2	Total

Position ar	nd Orientation [8]	
Rotation	Formula about the 3 Principal Axes by	θ
X:	$\mathbf{R}_{x} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{bmatrix}$	
Y:	$\mathbf{R}_{y} = \begin{bmatrix} \cos(\theta) & 0 & \sin(\theta) \\ 0 & 1 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) \end{bmatrix}$	
Z:	$\mathbf{R}_{z} = \begin{bmatrix} \cos\left(\theta\right) & -\sin\left(\theta\right) & 0\\ \sin\left(\theta\right) & \cos\left(\theta\right) & 0\\ 0 & 0 & 1 \end{bmatrix}$	
METR 4202		22/10/2012 - 12

Group	Matrix	Distortion	Invariant properties
Projective 8 dof	$\begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix}$	$\overset{\triangleleft}{\bigtriangleup}$	Concurrency, collinearity, order of contact: intersection (1 pt contact); tangency (2 pt con- tact); inflections (3 pt contact with line); tangent discontinuities and cusps. cross ratio (ratio of ratio of lengths).
Affine 6 dof	$\left[\begin{array}{rrrr} a_{11} & a_{12} & t_x \\ a_{21} & a_{22} & t_y \\ 0 & 0 & 1 \end{array}\right]$		Parallelism, ratio of areas, ratio of lengths on collinear or parallel lines (e.g. midpoints), linear combinations of vectors (e.g. centroids). The line at infinity, l_{∞} .
Similarity 4 dof	$\left[\begin{array}{ccc} sr_{11} & sr_{12} & t_x \\ sr_{21} & sr_{22} & t_y \\ 0 & 0 & 1 \end{array}\right]$		Ratio of lengths, angle. The circular points, I, J (see section 2.7.3).
Euclidean 3 dof	$\left[\begin{array}{ccc} r_{11} & r_{12} & t_x \\ r_{21} & r_{22} & t_y \\ 0 & 0 & 1 \end{array}\right]$		Length, area

Linear system equations

• We can represent the dynamic relationship between the states with a linear system:

$$\dot{x_1} = -7x_1 - 12x_2 + u \dot{x_2} = x_1 + 0x_2 + 0u y = x_1 + 2x_2 + 0u$$

ETR 4202

State evolution

• Consider the system matrix relation:

 $\dot{x} = \mathbf{F}x + \mathbf{G}u$ $y = \mathbf{H}x + Ju$

The time solution of this system is:

$$\mathbf{x}(t) = e^{\mathbf{F}(t-t_0)} \mathbf{x}(t_0) + \int_{t_0}^t e^{\mathbf{F}(t-\tau)} \mathbf{G} u(\tau) d\tau$$

If you didn't know, the matrix exponential is:

$$e^{\mathbf{K}t} = \mathbf{I} + \mathbf{K}t + \frac{1}{2!}\mathbf{K}^{2}t^{2} + \frac{1}{3!}\mathbf{K}^{3}t^{3} + \cdots$$

System poles are the Eigenvalues of \mathbf{F} , (p_i)

ER 4202

