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Schedule: Almost Done
Week Date Lecture (M: 12-1:30, 43-102)

1 23-Jul Introduction

2 30-Jul
Representing Position & Orientation & State
(Frames, Transformation Matrices & Affine
Transformations)

3 6-Aug Robot Kinematics and Dynamics
4 13-Aug Robot Dynamics & Control
5 20-Aug Obstacle Avoidance & Motion Planning
6 27-Aug Sensors, Measurement and Perception
7 3-Sep Perception (+ Prof. S. LaValle)
8 10-Sep Computer Vision & Localization (SFM/SLAM)
9 17-Sep Optical Flow (Prof. M. Srinivasan)

24-Sep Study break
10 1-Oct Public Holiday
11 8-Oct Localization and Navigation
12 15-Oct Control/Planning Under Uncertainty

13 22-Oct Course Review & Case Study
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Quick Outline

1. Course Review 
1. Kinematics

2. Perception

3. Control

4. Uncertainty

2. Lab 3: Q & A

3. Case Study
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Exam Format
• Subjects:

– Rotation Matrices: 10 %
– Kinematics: 15 %
– Dynamics & Motion Planning: 25 %
– Vision: 25 %
– State-Space Control: 25 %

• Material for the exam will come from:
– Tutorial and Tutorial Problems: 70%

– Lectures: 20%

– Laboratories: 10%

• Problem Types:
– Short answer

– Problem based

• Write solutions in the Answer Booklet(s)
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And: Yes, the Exam is Open Book!

• Exam is OPEN BOOK

• FYI:
– Central Exams Notified

– Certification letter posted the 
class website 
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It All Starts With: Frames in Space!!
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Kinematics Definition

• Kinematics: The study of motion in space 
(without regard to the forces which cause it)

• Assume: 
– Points with right-hand Frames

– Rigid-bodies  in  3D-space  (6-dof)

– 1-dof joints: Rotary  (R) or Prismatic (P) (5 constraints)

A

B

The ground is also a link

N links
M joints
DOF = 6N-5M
 If N=M, then DOF=N.  
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Position and Orientation [1]
• A position vectors specifies the 

location of a point in 3D (Cartesian) space

• BUT we also concerned with its orientation in 3D space.

This is specified as a matrix based on each frame’s unit vectors

A

B

O
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Position and Orientation [2]
• Orientation in 3D space:

This is specified as a matrix based on each frame’s unit vectors

• Describes {B} relative to {A}
 The orientation of frame {B} relative to coordinate frame {A}

• Written “from {A} to {B}” or “given {A} getting to {B}”

• Columns are {B} written in {A}

A

B

O
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Position and Orientation [3]
• The rotations can be analysed based on the unit components …

• That is: the components of the orientation matrix are the unit vectors 
projected onto the unit directions of the reference frame
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Position and Orientation [4]

• Rotation is orthonormal

• The of a rotation matrix inverse  = the transpose

 thus, the rows are {A} written in {B}
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Position and Orientation [8]

• Rotation Formula about the 3 Principal Axes by θ

X:

Y:

Z:
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Euler Angles
• Minimal representation of orientation (α,β,γ)
• Represent a rotation about an axis of a moving 

coordinate frame
 : Moving frame B w/r/t fixed A

• The location of the axis of each successive rotation 
depends on the previous one! …

• So, Order Matters  (12 combinations, why?)
• Often Z-Y-X:

– α: rotation about the z axis
– β: rotation about the rotated y axis
– γ: rotation about the twice rotated x axis

• Has singularities!  … (e.g., β=±90°)
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Ex: X-Y-Z Fixed Angles
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Coordinate Transformations [3]
• Composite transformation:

{B} is moved with respect to {A}:

{A}

XA

YA

ZA
AP

APB

BP
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Homogenous Transformation

• γ is a projective transformation

• ρ is a scaling value:
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Projective Transformations …

p.44, R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision
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Projective Transformations & 
Other Transformations of 3D Space

p.78, R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision
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Denavit-Hartenberg: A Frame Placement Convention

1. Align an axis along principal motion
1. Rotary (R): align rotation axis along the z axis

2. Prismatic (P): align slider travel along x axis

2. Orient  so as to position x axis towards next frame

3. θ (rot z) d (trans z) a (trans x) α (rot x)

22/10/2012 -METR 4202 19

Denavit-Hartenberg Rotation Matrix

• Each transformation is a product of 4 “basic”
transformations (instead of 6)

22/10/2012 -METR 4202 20
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Inverse Kinematics: Geometrical Approach
• We can also consider the geometric 

relationships defined by the arm 

• Start with what is fixed, explore all
geometric possibilities from there

θ1

θ2

θ3

{0}

ψ β

(x2, y2)
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Inverse Kinematics: Geometrical Approach [2]
• We can also consider the geometric 

relationships defined by the arm 

• Start with what is fixed, explore all
geometric possibilities from there
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Inverse Kinematics: Algebraic Approach
• We have a series of equations which define this system

• Recall, from Forward Kinematics:

• The end-effector pose is given by

• Equating terms gives us a set of algebraic relationships

θ1

θ2

θ3

{0}

φ,x,y
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Dynamics

• For Manipulators, the general form is

where
• τ is a vector of joint torques

• Θ is the nx1 vector of joint angles

• M(Θ) is the nxn mass matrix

• V(Θ, Θ)is the nx1 vector of centrifugal and Coriolis terms

• G(Θ) is an nx1 vector of gravity terms

• Notice that all of these terms depend on Θ so the 
dynamics varies as the manipulator move

22/10/2012 -METR 4202 24
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Dynamics – Langrangian Mechanics

• Alternatively, we can use Langrangian
Mechanics to compute the dynamics of a 
manipulator (or other robotic system)

• The Langrangian is defined as the difference 
between the Kinetic and Potential energy in 
the system

• Using this formulation and the concept of 
virtual work we can find the forces and 
torques acting on the system.

• This may seem more involved but is often 
easier to formulate for complex systems 

22/10/2012 -METR 4202 25

Static Forces
• We can also use the Jacobian to compute the joint torques required to 

maintain a particular force at the end effector

• Consider the concept of virtual work

• Or

• Earlier we saw that

• So that

• Or
1

2

3

F
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Revisiting The Jacobian

• I told you (Lec 4, Slide 19):

• True, but we can be more “explicit”
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Jacobian: Explicit Form

• For a serial chain (robot): The velocity of a link with 
respect to the proceeding link is dependent on the type of 
link that connects them

• If the joint is prismatic (ϵ=1), then

• If the joint is revolute (ϵ=0), then 

• Combining them (with v=(Δx, Δθ))

dz
i dtv

ˆ(in the  direction)
d

k
dt

  

    1
1

N
i

i i i i i
i

v v    
 

    p         
1 1

N N

i i i i i
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vv J  q J ω q

vJ
J

J
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Jacobian: Explicit Form [2]

• The overall Jacobian takes the form

• The Jacobian for a particular frame (F) can be expressed:

Where: &  

1

1 1 1

P P

n

n

x x

q qJ

z z  

   
     
  





1

1 1 1

F F
P P

F
n

F F
n

x x

q qJ

z z  

   
     
  





F F i
i i iR z z 0 0 1i
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Dynamics – Langrangian Mechanics [2]
, : Generalized Velocities, : Mass MatrixL K P M  θ

1

N

i
i

d K K P

dt
 

 

                 τ
θ θ θ

   ,M      τ θ v θ θ g θ 
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Dynamics – Langrangian Mechanics [3]
• The Mass Matrix:  Determining via the Jacobian!

! M is symmetric, positive definite      , 0T
ij jim m M  θ θ 
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Generalized Coordinates

• A significant feature of the Lagrangian Formulation is 
that any convenient coordinates can be used to derive the 
system.

• Go from Joint  Generalized
– Define p:  

Thus: the kinetic energy and gravity terms become

where:

1 1n nq q p p   q p 
d d p J q

*1
2

TKE  p H p 

 * 1 1T   H J HJ

* 1 T  G J G
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Trajectory Generation 

• The goal is to get from an initial position {i} to a final 
position {f} via a path points {p}

{i}

{f}

{p}

22/10/2012 -METR 4202 33

Joint Space

Consider only the joint positions
as a function of time

• + Since we control the joints, this is 
more direct

• -- If we want to follow a particular 
trajectory, not easy

– at best lots of intermediate 
points

– No guarantee that you can solve 
the Inverse Kinematics for all 
path points

22/10/2012 -METR 4202 34
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Cartesian Workspace

Consider the Cartesian positions
as a function of time

• + Can track shapes exactly 

• -- We need to solve the inverse 
kinematics and dynamics

Time

x

22/10/2012 -METR 4202 35

Configuration Space

• A robot configuration is a specification of the positions of all robot 
points relative to a fixed coordinate system

• Usually a configuration is expressed as a “vector” of 
position/orientation parameters

Slide from Latombe, CS326A
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Motion Planning

free space

s

g

free path

Slide from Latombe, CS326A
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Roadmap Methods

• Visibility graph
Introduced in the Shakey project at SRI in the late 60s. 
Can produce shortest paths in 2-D configuration spaces

g

s

Slide from Latombe, CS326A
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Roadmap Methods

• Voronoi diagram 
Introduced by 
Computational 
Geometry researchers. 
Generate paths that 
maximizes clearance. 

O(n log n) time
O(n) space

Slide from Latombe, CS326A
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Generalized (Reduced) -- Visibility Graph

tangency point

Slide from Latombe, CS326A
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Potential Field Methods

• Approach initially proposed for 
real-time collision avoidance [Khatib, 86]

Goal

Goal Force

O
bs

ta
cl

e 
F

or
ceMotion

Robot

Slide based on Latombe, CS326A
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Image Formation

Corke, Ch. 11
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Camera calibration

• Five intrinsic parameters:
– (fx, fy) : Focal length

– (ox, oy) : Image center

– α: skew 

• Extrinsic Parameters:
– Tx, Ty, Tz: Translation

– ϕ, φ, ψ: Orientation

0.5

0.5

C

x xC
im

C
im

y yC

X
f ox Z

y Y
f o

Z
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Image formation equations

u

(Xc,Yc,Zc)

ucf

From  Szeliski, Computer Vision: Algorithms and Applications
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Harris Corner Detectors

Adopted from   S. Lazebnik, Gang Hua (CS 558)
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Basic idea:
• Take 16x16 square window around detected feature

• Compute edge orientation (angle of the gradient - 90) for each pixel

• Throw out weak edges (threshold gradient magnitude)

• Create histogram of surviving edge orientations

Scale Invariant Feature Transform

Adapted from slide by David Lowe

0 2
angle histogram
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SIFT descriptor
Full version

• Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below)

• Compute an orientation histogram for each cell

• 16 cells * 8 orientations = 128 dimensional descriptor

Adapted from slide by David Lowe
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Line Detection – Hough Lines [1]
• A line in an image can be expressed as two variables:

– Cartesian coordinate system: m,b

– Polar coordinate system: r, θ
 avoids problems with vert. lines

y=mx+b

• For each point (x1, y1) we can write:

• Each pair (r,θ) represents a line that passes through (x1, y1) 
See also OpenCV documentation (cv::HoughLines)
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Line Detection – Hough Lines [2]
• Thus a given point gives a sinusoid

• Repeating for all points on the image

See also OpenCV documentation (cv::HoughLines)
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Finding states

• We can identify nodes of a dynamic system which 
contain the integrated time-history values of the system 
response
– We call them “states”

 		
ଵ
௦ 		

ଵ
௦ 

െ7

1

െ12

2



u y
x1 x2
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Linear system equations

• We can represent the dynamic relationship between the 
states with a linear system:

ଵሶݔ ൌ െ7ݔଵ െ ଶݔ12 	൅ ݑ		
ଶሶݔ ൌ 						 ଵݔ ൅			0ݔଶ ൅ ݑ0

	ݕ ൌ 						 ଵݔ ൅			2ݔଶ ൅ ݑ0
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State-space representation

• We can write linear systems in matrix form:

ሶ࢞ ൌ െ7 12
1 0

࢞ ൅ 1
0
ݑ

	࢟ ൌ 1 2 ࢞ ൅ ݑ0

Or, more generally:
ሶ࢞ ൌ ࢞ۯ ൅ ݑ۰
ݕ ൌ ࢞۱ ൅ ݑܦ

“State-space 
equations”

22/10/2012 -METR 4202 52
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State-space representation

• State-space matrices are not necessarily unique 
representations of a dynamic system
– There are several common forms (here’s two)

• Control canonical form
– Each node – each entry in x – represents a state of the system 

(each order of s maps to a state)

• Modal form
– Diagonals of the state matrix A are the poles (“modes”) of the 

transfer function
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Control canonical form

• CCF matrix representations have the following structure:

A = 
െܽଵ െܽଵ ⋯ െܽ௡ିଶ െܽ௡ିଵ െܽ௡
1 0 0 0 0
0 1
⋮ ⋱ ⋮

1 0 0
0 0 ⋯ 0 1 0

Pretty diagonal!
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Modal form

• MF matrix representations have the following structure:

A =
െ݌ଵ 0 ⋯ 0 0 0
0 െ݌ଶ 0
⋮ ⋱ ⋮
0 െ݌௡ିଶ 0
0 െ݌௡ିଵ 0
0 0 ⋯ 0 0 െ݌௡

Also pretty diagonal!
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Controllability matrix

• To convert an arbitrary state representation in F, G, H
and J to control canonical form A, B, C and D, the 
controllability matrix

ऍ ൌ ۵ ۴۵					۴ଶ۵ ⋯ ۴௡ିଵ۵
must be invertible (i.e. full rank).

• If you can write it in CCF, then the system equations 
must be linearly independent.
– Thus, a invertible controllability matrix means x can be driven 

to any value.
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State evolution

• Consider the system matrix relation:
ሶ࢞ ൌ ࢞۴ ൅ ݑ۵
ݕ ൌ ࢞۶ ൅ ݑܬ

The time solution of this system is:

࢞ ݐ ൌ ݁۴ ௧ି௧బ ࢞ ଴ݐ ൅ න ݁۴ ௧ିఛ ݑ۵ ߬ ݀߬
௧

௧బ

If you didn’t know, the matrix exponential is:

݁۹௧ ൌ ۷ ൅ ݐ۹ ൅
1
2!
۹ଶݐଶ ൅

1
3!
۹ଷݐଷ ൅ ⋯

System poles are the Eigenvalues of F, (݌௜)
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Stability

• We can solve for the natural response to initial conditions 
:૙࢞

࢞ ݐ ൌ ݁௣೔௧࢞଴
∴ ሶ࢞ ݐ ൌ ଴࢞௜݁௣೔௧݌ ൌ ۴݁௣೔௧࢞଴

A system will be stable provided eig ۴ ൏ 0

homogenous 
response
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Characteristic polynomial

• From this, we can see ۴࢞଴ ൌ ଴࢞௜݌
or, ሺ݌௜I െ ۴ሻ࢞଴ ൌ 0

which is true only when detሺ݌௜I െ ۴ሻ࢞଴ ൌ 0
Aka. the characteristic equation!

• We can reconstruct the CP in s by writing:

detሺݏI െ ۴ሻ࢞଴ ൌ 0
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Feedback control
• Given ࢞ሶ ൌ ࢞۴ ൅ if we know ۴ ,ݑ۵ and ۵, we can design a 

controller ݑ ൌ െ۹࢞ such that
eig ۴ െ ۵۹ ൏ 0

• If we have full measurement and control of the states of ࢞, we can 
position poles of the closed-loop system in arbitrary locations

– Modal form makes this straight forward:

۴ െ ۵۹ = 
െ1݌ െ ܩ ⋅ 1݆ܭ

െ2݌ െ ܩ ⋅ 2݆ܭ
െ3݌ െ ܩ ⋅ 3݆ܭ
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Observers

• Observers (aka “estimators”) are used to infer the 
hidden states of a system from measured outputs.

A controller is designed using estimates in lieu of full measurements

۶

۶ሺ۵, ۴ሻ

ሺ۵, ۴ሻ
u x

ොݔ

y

ොݕ

System

Model


-

෤ݕ
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Observers

• The state estimate can be treated like a control 
system itself

– Dynamics to update the estimate:
ොሶݔ ൌ Fݔො+Gu

– By measuring an ‘error signal’ from the difference 
between the real output measurement and the output 
estimate, ݔ෤ ൌ ݔ െ  ො, the state estimate can be shown toݔ
converge
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Observers

• Just like you might expect:

ොሶݔ ൌ Fݔො+Gu+L(yെ Hݔො)
ݔ෤ሶ ൌ ሺF െ LH)ݔ෤

۶

۶ሺ۵, ۴ሻ

ሺ۵, ۴ሻ
u x

ොݔ

y

ොݕ

Model

-

෤ݕ
ۺ

Choose L to make 
෤ݔ converge to 0


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Observability

• The ability to infer these values is called “Observability”
– This is the dual of controllability; a system that is observable is 

also controllable and vice versa.

– Observability matrix:

ङ ൌ	

۶
۶۴
⋮

۶۴୬ିଵ

22/10/2012 -METR 4202 64



33

Motion planning under uncertainty

• Goal: Find a motion strategy to accomplish a given task, 
where there's one or more combination of:
– Motion error.

– Sensing error. 

– Model error: Partially known / imperfectly known / unknown 
operating environment.

• Motion planning under uncertainty in 3D C-space:
– PSPACE-hard [Natarajan'86].

– NEXPTIME-hard [Cany & Reif'87].
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Several approaches
• Algorithms vs. heuristics.

Conservative ReactiveProbabilistic
Overestimate risk. Underestimate 

difficulty of 
achieving goal.

Quantify uncertainty, 
to tradeoff risk w. 
achieving goal.

Algorithms:
•Enlarging obstacles.
•Pre-image backchaining.

Reactive greedy 
heuristics, base on 
velocity obstacle.

POMDP 
Algorithms.
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Partially Observable Markov Decision Processes 
(POMDP)
• Defined as 6 tuples (S, A, Ω, T, Z, R):

– State space (S).

– Action space (A).

– Observation space (Ω).

– Transition function T(s, a, s').

– Observation function Z(s, a, o).

– Reward function R(s, a).

• Belief: Distribution over states.

• Goal: Find an optimal policy.
– Policy: Mapping from beliefs to actions.

Not known
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POMDP policy: Usage

Belief 
update

Belief
Policy

Action

Observation

POMDP controller
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Computing an optimal policy

• Dynamic programming to construct optimal value 
function: Value iteration algorithm.

• Starts from computing the optimal value for 1 step.

• Subsequently compute the optimal value for step-2, step-
3, …, step-n for all beliefs, using:

where Τ(b, a, o) = b', 

Vi
*(b)  HVi1(b)

max
a

R(b, a) P(o
o

 b, a)Vi1
* (T(b, a, o))

b' s'  
Z s', a, o  T s, a, s' b s 

sS


P o a, b 
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Example: Tiger problem
A robot is sent to free kitty the kitten from an evil taxidermist. The 
taxidermist has two rooms for storing animals he is going to 
"preserve". One room contains kitty, while the other contains a 
ferocious tiger. The robot doesn't know which room kitty is in and 
needs to avoid opening the door containing the tiger. It can listen to 
improve its knowledge of where kitty                                        is. 
However, it can only localize the                                           noise 
correctly 85% of the time.                                                Suppose 
listening costs -1, opening                                                        the 
tiger's room costs -20, opening                                                 kitty's 
room gives a reward of 10.
POMDP model ? What's the optimal 
policy for 1 planning horizon?                                                        

??
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SECaT Time! … Brought To You By the Number 5
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