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So far… wonderful world of “perfect” robotics 

•  Kinematics. 
•  Dynamics. 
•  Control. 
•  Obstacle avoidance. 
•  Motion planning. 
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Assume “perfect”
 robotic system  



2 

In real life, nothing is perfect… 

•  Remember lab 1 ?  
•  Outside disturbances cause trouble too 
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Censam sea trials 2009. Courtesy: T. Bandyopadhyay, L. Sarcione, & F. Hover. 

In real life, nothing is perfect… 

•  Remember lab 1 ?  
•  Outside disturbances cause trouble too 
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So…  

•  Previous lectures & the cool skype lecture useles ??? 
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So…  

•  Previous lectures & the cool skype lecture useles ??? 
•  No, depending on the task & environment, uncertainty

 (disturbances, errors, etc.) may be negligible. 
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Tasks only need low 
accuracy 

Tasks require high 
accuracy / critical tasks 

Inaccurate 
robotic system 

Accurate 
robotic system 
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Today: wonderful world of “perfect” robotics 

•  Motion planning under uncertainty: 
 What is it. 
 How difficult to solve it. 
 Several approaches: 
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Conservative Reactive Probabilistic 

Recall: Motion planning (week-5) & skype lecture 

 Deterministic motion planning: Find a valid path between
 two configurations, to accomplish a given task.  
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 Free space (set
 of collision-free
 configurations)."

 Forbidden region
 (set of colliding
 configurations)."

C-space 
start 

goal 
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Motion planning under uncertainty 

 Initial is not known exactly. 
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Motion planning under uncertainty 

 Robot's motion is errorneous, either due to system errors
 & noise or due to outside disturbances. 
 Relax the goal position. 
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Motion planning under uncertainty 

 Environment is not known exactly. 
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Deterministic motion planning vs  
motion planning under uncertainty 

•  Deterministic motion
 planning 
–  Find a valid path between

 two configurations in order
 to accomplish a task, given: 

–  No control error. 
–  No sensing. 
–  Know the operating

 environment perfectly. 

•  Motion planning under
 uncertainty (today) 
–  Find a motion strategy to

 accomplish a task, where
 there's a combination of: 

–  Control error. 
–  Sensing error. 
–  Partially / unknown

 operating environment. 
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Today: wonderful world of “perfect” robotics 

•  In particular: Motion planning under uncertainty. 
 What is it. 
 How difficult to solve it. 
 Several approaches: 
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Conservative Reactive Probabilistic 

Problem hardness 

•  Finding a motion strategy for:  
–  A point robot operating in 3D environment, where obstacles are

 planar walls. 
–  To move from a known initial configuration to a point in a

 given goal region. 
–  Control error: Bounded velocity error. 
–  Sensing error: Bounded localization error. 

 is PSPACE-hard [Natarajan'86]. 
 is NEXPTIME-hard [Cany & Reif'87]. 
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A little bit on computational complexity 1/3 

•  Algorithms are not made to be used only once & are not
 made to be used for only one particular problem. 

•  How long does it take for the algorithm to find the
 solution when the input size increases ? 
–  In particular, is it polynomial or exponential ? 
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A little bit on computational complexity 2/3 
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Machine 

Today’s computer (Deterministic) Turing machine 

Non-Deterministic Turing machine 
It can generate multiple possible
 program executions at once. 
Same capability as Turing machine,
 but can get things done faster. 
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A little bit on computational complexity 3/3 

•  P: Can be solved in polynomial time in Turing machine. 
•  NP: Can be solved in polynomial time on a                

 non-deterministic Turing machine.  
   Verifiable in polynomial time in today's computer. 

•  PSPACE: Can be solved using polynomial space in
 Turing machine. 
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A little bit on computational complexity 3/3 

•  P: Can be solved in polynomial time in Turing machine. 
•  NP: Can be solved in polynomial time on a                

 non-deterministic Turing machine.  
   Verifiable in polynomial time in today's computer. 

•  PSPACE: Can be solved using polynomial space in
 Turing machine. 

•  NEXPTIME: Can be solved in exponential time on a
 non-deterministic Turing machine. 
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A little bit on computational complexity 3/3 

•  P: Can be solved in polynomial time in Turing machine. 
•  NP: Can be solved in polynomial time on a                

 non-deterministic Turing machine.  
   Verifiable in polynomial time in today's computer. 

•  PSPACE: Can be solved using polynomial space in
 Turing machine. 

•  NEXPTIME: Can be solved in exponential time on a
 non-deterministic Turing machine. 
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Want to know more ? 
Introduction to the Theory of Computation  
by Michael Sipser. 

Problem hardness 

•  Finding a motion strategy for:  
–  A point robot operating in 3D environment, where obstacles are

 planar walls. 
–  To move from a known initial configuration to a point in a

 given goal region. 
–  Control error: Bounded velocity error. 
–  Sensing error: Bounded localization error. 

 is PSPACE-hard [Natarajan'86]. 
 is NEXPTIME-hard [Cany & Reif'87]. 
 input size: number of planar walls. 
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Ok, it’s hard… So, what should we do ? 
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Today: wonderful world of “perfect” robotics 

•  In particular: Motion planning under uncertainty. 
 What is it. 
 How difficult to solve it. 
 Several approaches:  

Methods: Algorithms vs heuristics 

METR 4202: Robotics October 15, 2012 - 21 

Conservative Reactive Probabilistic 
Overestimate risk. Underestimate

 difficulty of
 achieving goal. 

Quantify uncertainty,
 to tradeoff risk w.
 achieving goal. 

Simplest algorithm: Enlarging obstacles 
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Pre-image backchaining algorithm 

•  Uncertainty in motion & sensing. 
–  Ability to recognize if it's in a particular region. 

•  Motion command: (control input, termination condition).  
•  Pre-image: Region of C-space, where a motion command

 is guarantee to reach a given goal region, recognizably. 
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Ch. 10 

Imagine…  
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Today: wonderful world of “perfect” robotics 

•  In particular: Motion planning under uncertainty. 
 What it is. 
 How difficult to solve it. 
 Several approaches: 
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 Conservative Reactive Probabilistic 

Reactive greedy heuristic, based on Velocity obstacle 

•  Velocity obstacle 

•  Avoid velocity in VO, choose the one closest to goal. 

METR 4202: Robotics October 15, 2012 - 26 

€ 

VOA |B = v ∃t > 0 pA + t v − vB( )∈PosCol{ }
pA : center of robot A.
PosCol :  cone region, with tip pA ,  covering B⊕A.
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In open environment… 
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T. Bandyopadhyay & F. Hover, 2009. 

Seems good, but in cluttered environment… 

•  From 3000 simulation runs, #success: 0. 
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Today: wonderful world of “perfect” robotics 

•  In particular: Motion planning under uncertainty. 
 What it is. 
 How difficult to solve it. 
 Several approaches: 
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 Conservative  Reactive Probabilistic 
   POMDP 

• Probability review. 
• POMDP. 
• POMDP solvers. 

How to quantify uncertainty ?  
Probability to the rescue… 
•  FATHER(F): Nurse, what is the probability that the drug will work?  
•  NURSE (N): I hope it works, we’ll know tomorrow.  
•  F: Yes, but what is the probability that it will?  
•  N: Each case is different, we have to wait. 
•  F: But let’s see, out of a hundred patients that are treated under similar

 conditions, how many times would you expect it to work?  
•  N (somewhat annoyed): I told you, every person is different, for some it

 works, for some it doesn’t. 
•  F (insisting): Then tell me, if you had to bet whether it will work or not,

 which side of the bet would you take?  
•  N (cheering up for a moment): I’d bet it will work.  
•  F (somewhat relieved): OK, now, would you be willing to lose two dollars

 if it doesn’t work, and gain one dollar if it does? 
•  N (exasperated): What a sick thought! You are wasting my time! 
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Bertsekas & Tsitsiklis,  
Introduction to Probability. 
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Probability review 1/4: Probabilistic Modeling 

•  View:  
–  Experiments with random outcome. 
–  Quantifiable properties of the outcome.  

•  Three components: 
–  Sample space: Set of all possible outcomes. 
–  Events: Subsets of sample space. 
–  Probability: Quantify how likely an event occurs. 

Probability review 2/4: Probability 

•  Probability: A function that maps events to real numbers
 satisfying these axioms: 
1.  Non-negativity: 
2.  Normalization:  
3.  Additivity of finite / countably infinite events.  

€ 

P(E) ≥ 0, where E is an event.

€ 

P(S) =1, where S is the sample space.

  

€ 

P 
i=1

∞ / n
Ei

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ = P Ei( )

i=1

∞ / n

∑ ,  

where Ei are disjoint / mutually exclusive, i :  natural number.
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Probability review 3/4: Random Variables 

•  Interest is on numerical values associated w. samples, e.g.: 
–  Sample 50 students enrolled in METR4202, what's the major of

 most of the students.  
–  Roll a fair dice, get $5 if the outcome is even, & loose $5 if the

 outcome is odd. 
•  Random variable X is a function                          . 

–  Num: countable set (e.g., integer)  discrete random variable. 
–  Num: uncountable set (e.g., real)  continuous random variable. 

€ 

X : S→Num

Probability review 4/4: Characterizing Random Variables 

•  Cumulative distribution function (cdf) 

•  Discrete: Probability mass function (pmf) 

•  Continuous: Probability density function/probability
 distribution function (pdf) 

€ 

fX x( ) =
dFX x( )
dx

; P a ≤ X ≤ b( ) = fX x( )dx
a

b

∫€ 

fX x[ ] = P X = x( )
€ 

FX x( ) = P X ≤ x( ) = P s X(s) ≤ x,s∈ S{ }( )
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For more on probability… 

•  STAT2202 (compulsary for Mechatronic students). 
•  ENGG7302: 

–  http://itee.uq.edu.au/~engg7302/material/stocProc/lecSP01.pdf 
–  http://itee.uq.edu.au/~engg7302/material/stocProc/lecSP02.pdf 

•  Introduction to Probability by Bertsekas & Tsitsiklis. 
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Today: wonderful world of “perfect” robotics 

•  In particular: Motion planning under uncertainty. 
 What it is. 
 How difficult to solve it. 
 Several approaches: 
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 Conservative  Reactive Probabilistic 
   POMDP 
 Probability review. 
• POMDP. 
• POMDP solvers. 
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POMDP:  
Partially Observable Markov Decision Processes 

•  Main components:  
–  State space (S). 
–  Action space (A). 
–  Observation space (Ω). G!
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POMDP: Modeling motion error 

•  Main components:  
–  State space (S). 
–  Action space (A). 
–  Observation space (Ω). 
–  Transition function 

 T(s, a, s') =  
  P(St+1 = s' | St = s, At = a)  

G!
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POMDP: Modeling sensing error 

•  Main components:  
–  State space (S). 
–  Action space (A). 
–  Observation space (Ω). 
–  Transition function: T(s, a, s'). 
–  Observation function 

 Z(s, a, o) = 
  P(Ωt = o |  St = s, At = a) 

G!
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POMDP: Modeling objective function 

•  Main components:  
–  State space (S). 
–  Action space (A). 
–  Observation space (Ω). 
–  Transition function T(s, a, s'). 
–  Observation function Z(s, a, o). 
–  Reward function 

 R(s, a,): Reward received when
 the robot performs action a
 from state s. 

G!
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POMDP: key points 

•  Main components: 
–  State space (S). 
–  Action space (A). 
–  Observation space (Ω). 
–  Transition function T(s, a, s'). 
–  Observation function Z(s, a, o). 
–  Reward function R(s, a). 

G!

Not known"

METR 4202: Robotics October 15, 2012 - 41 

POMDP: key points 

•  Belief: Distribution over states. 
•  Belief space: The set of all possible beliefs. 
•  Policy: Mapping from beliefs to actions. 
•  Goal: Find optimal policy. 

G! 0.1 … 0.2 0.07 0.03 

0.3 … 0.1 0.01 0.2 

…
 Belief"
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POMDP policy: Usage 

Belief
 update"

Belief" Policy"

Action"

Observation"

POMDP controller"

Belief update 

•  Recall POMDP definition: 
–  State space (S). 
–  Action space (A). 
–  Observation space (Ω). 
–  Transition function: T(s, a, s'). 
–  Observation function: Z(s, a, o). 
–  Reward function: R(s, a).  

•  If the robot is currently at
 belief bt, what is its belief
 after performing action at of
 A, and perceiving
 observation ot of Ω ? 

G!
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Belief update 

•  Current belief bt can be updated to a
 new belief bt+1 = Τ(bt, at, ot), after the
 robot performs at and perceives ot
 using: 

 P(ot | at, bt) can be treated as a
 normalizing constant, s.t. bt+1 sum to 1. 
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€ 

bt+1 s'( ) =

Z s', at , ot( ) T s, at , s'( )bt s( )
s∈S
∑

P ot at , bt( )

at 

ot 

bt 

bt+1 

POMDP policy: Usage 

Belief
 update"

Belief" Policy"

Action"

Observation"

POMDP controller"
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Policy representations 

•  Set of tuples of (belief, action). 
•  Policy graph, policy tree.  
•  Function (set of    -vectors).  
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€ 

α

Optimal policy 

•  Each policy induces a value for each belief. 
•  The value Vπ(b) of belief b when following policy π is

 the expected total reward received if the robot starts
 from b and follows policy π. 

•  Optimal policy π*: For all beliefs b, Vπ*
 (b)     Vπ

 (b) for
 any policy π.   

•  The value function Vπ* is called the optimal value
 function.  
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€ 

≥
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Properties of optimal value function 

•  Optimal value function:  
–  Finite horizon: Piecewise linear convex. 
–  Infinite horizon: Can be approximated arbitrarily closely with a

 piecewise linear convex function. 
–  Convex:  
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b 

V*(b) 

€ 

f (tx1 + (1− t)x2) ≤ tf (x1) + (1− t) f (x2)

€ 

V *(b) =max
α∈Γ

α⋅ b( )

=max
α∈Γ

α(si)⋅ b(si)
i
∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

: gradient of a line. 

€ 

α

Smallwood & Sondik’73 

Computing optimal policy 

•  Dynamic programming to construct optimal value
 function: Value iteration algorithm. 

•  Starts from computing the optimal value for 1 step. 
•  Subsequently compute the optimal value for step-2,

 step-3, …, step-n for all beliefs, using: 
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€ 

Vi
*(b) = HVi−1(b)

=max
a

R(b, a) +γ P(o
o
∑ b, a)Vi−1

* (T(b, a, o))

Problem: Finding the optimal policy is PSPACE-hard. 

Bellman
 update 
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Today: wonderful world of “perfect” robotics 

•  In particular: Motion planning under uncertainty. 
 What it is. 
 How difficult to solve it. 
 Several approaches: 
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 Conservative  Reactive Probabilistic 
   POMDP 
 Probability review. 
 POMDP. 
• POMDP solvers. 

QMDP heuristic 

•  Use a special case of POMDP –called MDP (Markov
 Decision Processes)– 
–  Only motion uncertainty, no localization uncertainty. 

•  Assume that after one step, state uncertainty is gone. 

METR 4202: Robotics October 15, 2012 - 53 

€ 

QMDP s, a( ) = R(s,a) +γ T s, a, s'( )
s'
∑ V (s')

Q b,a( ) = b(s)QMDP
s
∑ (s,a)
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Point-based approach 

•  Trade optimality with approximate optimality for speed. 
•  Key: Sampling 
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B 

Plan only w.r.t. the representative set of sampled beliefs. 

Apply
 Bellman
 update 

Point-based approach 

•  Interleave 
–  Sample beliefs. 

•  PBVI (Pineau, et.al. ’03), HSVI 1 (Smith & Simmons ‘03), Perseus
 (Spaan & Vlassis’05), HSVI2 (Smith & Simmons ‘05), SARSOP
 (Kurniawati, et.al. ‘08).  

–  Computing Bellman updates. 

•  Guarantee to converge to the optimal policy as # sampled
 beliefs goes to inf. 
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Thanks to point-based approach 

12 states  870 states 
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Thanks to point-based approach 
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Reaches > 90%
 success rate in 10 min."
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Today: wonderful world of “perfect” robotics 

•  Motion planning under uncertainty: 
 What is it. 
 How difficult to solve it. 
 Several approaches: 
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 Conservative  Reactive  Probabilistic 
Overestimate risk. Underestimate

 difficulty of
 achieving goal. 

Quantify uncertainty,
 to tradeoff risk w.
 achieving goal. 

Myths… I hope you don’t buy after this class   

•  No need to work on algorithms… Just build better faster
 computers… 

•  The maths in algorithm design/analysis: 
–  For show-off… 
–  To compensate lack of English ability… 
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Video share 
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