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Previously on METR4202… 

• Robotics, kinematics, perception, oh my! 

 

• You built robot arms to drive an end-effector to a 

specific point in space – some of you did well! 

 

• …and many of you discovered that that’s hard to 

do accurately! 
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What you already know* 

• Signals can be represented by transfer 

functions in the s-domain 
 

• Roots of a transfer function’s denominator 

(poles) indicate the stability of the system 
 

• Poles move around under feedback control 

– Feedback can stabilise an unstable system 
 

*If you have no idea what I’m talking about, now is the time to mention it. 
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A quick recap 

• Differential equations are used to represent 

the dynamics of systems in time: 

𝒙 = 𝑓(𝒙, 𝑡)  

 

• For linear systems, we use the Laplace 

transform to represent differential operators: 

𝑠𝒙 = ℒ 𝑓 𝒙, 𝑡  
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A quick recap 

• For SISO LTI* systems, output y is a linear 

function of input u in the Laplace domain: 

𝑦 = 𝐻𝑢 
H is the ‘transfer function’ relating y and u 

• We use block diagrams to represent such 

systems in convenient graphical form: 

S  𝐻   𝐺 

𝑘 

u y 

*Single Input Single Output, Linear Time Invariant 
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State-space lolwut? 

• A ‘clean’ way of representing systems 

 

• Easy implementation in matrix algebra 

 

• Simplifies understanding Multi-Input-Multi-

Output (MIMO) systems 
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Introduction to states* 

• Introductory brain-teaser: 

– If you have a step response model of a system 

with integration, how do you represent non-

zero initial conditions? 

 
Eg. how would you setup a simulation of a step response, mid-step? 

t = 0 
t 

start 

*Not-insubstantial portions of these slides are based on Franklin, Powel and Enami-Naeni 
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Store the values 

• The time-history of dynamic systems can be 

encapsulated by ‘states’. 

• A state is any previous value upon which 

future outputs depend: 

– Eg. velocities, altitude, displacement, charge 

potential, stored magnetic fields, etc. 

 

All the state values of a system are stored in a single column 

vector x, which is collectively termed “the system’s state”.  
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Finding states 

• Linear systems can be written as networks 

of simple dynamic elements: 
 

𝐻 = 
𝑠 + 2

𝑠2 + 7𝑠 + 12
=

2

𝑠 + 4
+

−1

𝑠 + 3
 

S   
1
𝑠   

1
𝑠 S 

−7 

1 

−12 

2 

S 

u y 
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Finding states 

• We can identify the nodes in the system 

– These nodes contain the integrated time-history 

values of the system response 

– We call them “states” 
 

S   
1
𝑠   

1
𝑠 S 

−7 

1 

−12 

2 

S 

u y 
x1 x2 



8 Oct 2012 

11 

METR4202 - Advanced Controls and Robotics Paul Pounds 

Linear system equations 

• We can represent the dynamic relationship 

between the states with a linear system: 
 

 𝑥1  = −7𝑥1 − 12𝑥2  +   𝑢 

 𝑥2  =      𝑥1 +   0𝑥2 + 0𝑢 
 

  𝑦  =      𝑥1 +   2𝑥2 + 0𝑢 
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State-space representation 

• We can write linear systems in matrix form: 

 𝒙  =
−7 12
1 0

𝒙 +
1
0
𝑢 

 𝒚  = 1 2 𝒙 + 0𝑢 

 

Or, more generally: 

𝒙 = 𝐀𝒙 + 𝐁𝑢 

𝑦 = 𝐂𝒙 + 𝐷𝑢 

 

“State-space 

equations” 
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Why “State-space”? 

• State vector entries can be thought of as 

coordinates in a space; hence ‘state-space’ 

x1 

x2 

x3 

x 

eg. ℝ3 
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State-space representation 

• State-space matrices are not necessarily 

unique representations of a dynamic system 

– There are several common forms (here’s two) 

• Control canonical form 

– Each node – each entry in x – represents a state 

of the system (each order of s maps to a state) 

• Modal form 

– Diagonals of the state matrix A are the poles 

(“modes”) of the transfer function 
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Other forms 

• There are other representations are useful 

for other purposes: 

– Observer canonical form 

– Phase variable canonical form 

– Jordan canonical form 

– Etc. 
 

But you don’t need to know about those for this course, but check out 

http://www.ece.rutgers.edu/~gajic/psfiles/canonicalforms.pdf  

if you’re interested! 
 

For now, let’s focus on CCF and MF 
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Control canonical form 

• CCF matrix representations have the 

following structure: 

 
−𝑎1 −𝑎1 ⋯ −𝑎𝑛−2 −𝑎𝑛−1 −𝑎𝑛
1 0 0 0 0
0 1
⋮ ⋱ ⋮

1 0 0
0 0 ⋯ 0 1 0

 

Pretty diagonal! 
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Modal form 

• MF matrix representations have the 

following structure: 

 
−𝑝1 0 ⋯ 0 0 0

0 −𝑝2 0

⋮ ⋱ ⋮
0 −𝑝𝑛−2 0

0 −𝑝𝑛−1 0
0 0 ⋯ 0 0 −𝑝𝑛

 

Also pretty diagonal! 
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STOP 

EXAMPLE TIME 
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BREAK TIME 

GIVE 

WAY 
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Cool robotics share 
The McDonnell Douglas DC-X “Delta Clipper” was a demonstrator developed to explore vertical rocket 

landing and reusable single-stage to orbit technology. The DC-X used nonlinear state-space control in its 

flight attitude regulation avionics.  Testing of the prototype was carried out by NASA, but the design was 

a competitor for NASA’s own X-33 craft.  Despite a rigorous testing schedule, the public success of the 

DC-X  (compared to the embarrassing delays plaguing the X-33) led to its continued development.  

However, punishing deadlines and burned-out ground crew eventually resulted in a landing accident that 

severely damaged the craft – the program was quickly cancelled. 
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DC-X Delta Clipper 
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State variable transformation 

• Important note! 

– The states of a control canonical form system 

are not the same as the modal states 

– They represent the same dynamics, and give the 

same output, but the vector values are different! 

• However we can convert between them: 

– Consider state representations, x and q where 

x = Tq 
 

T is a “transformation matrix” 
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State variable transformation 

• Two homologous representations: 

and 
 

We can write: 
𝒙 = 𝐓𝒒 = 𝐀𝐓𝒒 + 𝐁𝑢 

𝒒 = 𝐓−𝟏𝐀𝐓𝒒 + 𝐓−𝟏𝐁𝑢 

Therefore, 𝐅 = 𝐓−𝟏𝐀𝐓 and 𝐆 = 𝐓𝐁 

Similarly, 𝐂 = 𝐇𝐓 and 𝐷 = 𝐽  

𝒙 = 𝐀𝒙 + 𝐁𝑢 

𝑦 = 𝐂𝒙 + 𝐷𝑢 

𝒒 = 𝐅𝒒 + 𝐆𝑢 

𝑦 = 𝐇𝒒 + 𝐽𝑢 
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Consider… 

• What if we try to turn an arbitrary state 

description into control canonical form? 

– We expect that for𝐀𝐓−𝟏 = 𝐓−𝟏𝐅: 
−𝑎1 −𝑎2 … −𝑎𝑛
1 0 0
0
0

⋱
0

⋮
1 0

𝑡1
𝑡2
⋮
𝑡𝑛

=

𝑡1𝐅
𝑡2𝐅
⋮
𝑡𝑛𝐅

 

where ti are the rows of 𝐓−𝟏 

Then, 𝑡2 = 𝑡3𝐅, and 𝑡1 = 𝑡2𝐅 = 𝑡3𝐅
2, etc… 

 

Note: 𝑡𝑛 is a row and 𝑡𝑛𝐅 yields a row 
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Consider… 

• 𝐓−𝟏𝐆 = 𝐁, in control canonical form yields 
𝑡1𝐺
𝑡2𝐺
⋮
𝑡𝑛𝐺

=

1
0
⋮
0

 

The two results together give: 

 𝑡𝑛𝐆 = 0 

… 

 𝑡2𝐆 = 𝑡𝑛F
n−1G = 0 

 𝑡1𝐆 = 𝑡𝑛F
nG = 1 
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Consider… 

• Look at the last entry for t3… 

– We can write this as: 

𝑡3 𝐆 𝐅𝐆 … 𝐅𝑛𝐆 = 0 0 … 1  

Or 

𝑡3 = 0 0 … 1 𝓒−𝟏 

where 𝓒 = 𝐆 𝐅𝐆     𝐅2𝐆 ⋯ 𝐅𝑛−1𝐆  

 

This is called the “controllability matrix” 
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Controllability matrix 

• To convert an arbitrary state representation 

in F, G, H and J to control canonical form 

A, B, C and D, the controllability matrix 

𝓒 = 𝐆 𝐅𝐆     𝐅2𝐆 ⋯ 𝐅𝑛−1𝐆  

must be invertible (i.e. full rank). 

 

>deep think< 

 

Why is it called the “controllability” matrix? 
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Controllability matrix 

• If you can write it in CCF, then the system 

equations must be linearly independent.  

 

• Transformation by any invertible matrix 

preserves the controllability of the system. 

 

• Thus, a invertible controllability matrix 

means x can be driven to any value. 
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Kind of awesome 

• The controllability of a system depends on 

the particular set of states you chose 

 

• You can’t tell just from a transfer function 

whether all the states of x are controllable 

 

• System poles are the Eigenvalues of F, (𝑝𝑖) 
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State evolution 

• Consider the system matrix relation: 
𝒙 = 𝐅𝒙 + 𝐆𝑢 

𝑦 = 𝐇𝒙 + 𝐽𝑢 
 

The time solution of this system is: 

𝒙 𝑡 = 𝑒𝐅 𝑡−𝑡0 𝒙 𝑡0 + 𝑒𝐅 𝑡−𝜏 𝐆𝑢 𝜏 𝑑𝜏
𝑡

𝑡0

 

 

If you didn’t know, the matrix exponential is: 

𝑒𝐊𝑡 = 𝐈 + 𝐊𝑡 +
1

2!
𝐊2𝑡2 +

1

3!
𝐊3𝑡3 +⋯ 
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Stability 

• We can solve for the natural response to 

initial conditions 𝒙𝟎: 

𝒙 𝑡 = 𝑒𝑝𝑖𝑡𝒙0 

∴ 𝒙 𝑡 = 𝑝𝑖𝑒
𝑝𝑖𝑡𝒙0 = 𝐅𝑒𝑝𝑖𝑡𝒙0 

 

Clearly, a system will be stable provided  
eig 𝐅 < 0 

 

homogenous 

response 
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Characteristic polynomial 

• From this, we can see 𝐅𝒙0 = 𝑝𝑖𝒙0   

or, (𝑝𝑖I − 𝐅)𝒙0 = 0 

which is true only when det(𝑝𝑖I − 𝐅)𝒙0 = 0 
Aka. the characteristic equation! 

 

• We can reconstruct the CP in s by writing: 

det(𝑠I − 𝐅)𝒙0 = 0 
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Great, so how about control? 

• Now that we have a state space model, how do we 

make the system stable, or converge to desired 

states? 

 

Easy: Feedback! 

 

• Given 𝒙 = 𝐅𝒙 + 𝐆𝑢, if we know 𝐅 and 𝐆, we can 

design a controller 𝑢 = −𝐊𝒙 such that 

eig 𝐅 − 𝐆𝐊 < 0 
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Full state feedback 

• If we have full measurement and control of 

the states of 𝒙, we can position poles of the 

closed-loop system in arbitrary locations 

– Modal form makes this straight forward: 

𝐅 − 𝐆𝐊 = 

−𝑝1− 𝐺 ⋅ 𝐾1𝑗

−𝑝2− 𝐺 ⋅ 𝐾2𝑗

−𝑝3− 𝐺 ⋅ 𝐾3𝑗

 

 

Of course, this hardly ever happens in reality. 

Brain teaser: Why? 
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Example: PID control 

• Consider a system parameterised by three 

states: 𝑥1, 𝑥2, 𝑥3 where 𝑥2 = 𝑥 1 and 𝑥3 = 𝑥 2 

𝒙 =
1

1
−2

𝒙 − 𝐊𝑢 

𝑦 =  0 1 0 𝒙 + 0𝑢 

𝑥2is the output state of the system; 𝑥1is the 

value of the integral; 𝑥3 is the velocity. 
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Example: PID control 

• We can choose 𝐊 to move the eigenvalues 

of the system as desired: 

det

1 − 𝐾1
1 −𝐾2

−2 − 𝐾3

= 𝟎 

All of these eigenvalues must be positive. 

 

It’s straightforward to see how adding derivative 

gain 𝐾3 can stabilise the system.  
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In reality… 

• You can never measure or apply control 

action to all states directly. 

– The majority of system states will be hidden to 

the control engineer. 

 

But we can pretend! 

 

• We can design a controller as if we did, 

using an estimate – an educated guess. 
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Observers 

• Observers (aka “estimators”) are used to 

infer the hidden states of a system from 

measured outputs. 

 

 

 
 
 

A controller is designed using estimates in lieu of full measurements 

𝐇 

𝐇 (𝐆, 𝐅) 

(𝐆, 𝐅) 
u x 

𝑥  

y 

𝑦  

System 

Model 

S 
- 

𝑦  



8 Oct 2012 

39 

METR4202 - Advanced Controls and Robotics Paul Pounds 

Observers 

• The state estimate can be treated like a 

control system itself 

– Dynamics to update the estimate: 

𝑥  = F𝑥 +Gu 

– By measuring an ‘error signal’ from the 

difference between the real output measurement 

and the output estimate, 𝑥 = 𝑥 − 𝑥 , the state 

estimate can be shown to converge 
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Observers 

• Just like you might expect: 

𝑥  = F𝑥 +Gu+L(y −H𝑥 ) 
𝑥  = (F− LH)𝑥  

 

𝐇 

𝐇 (𝐆, 𝐅) 

(𝐆, 𝐅) 
u x 

𝑥  

y 

𝑦  

Model 

S - 

𝑦  
𝐋 

Choose L to make 

𝑥  converge to 0 

S 
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Observability 

• The ability to infer these values is called 

“Observability” 

– This is the dual of controllability; a system that 

is observable is also controllable and vice versa. 

– Observability matrix: 

 

𝓞 = 

𝐇
𝐇𝐅
⋮

𝐇𝐅n−1
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Just scratching the surface 

• There is a lot of stuff to state-space control 

 

• One  lecture (or even two) can’t possibly 

cover it all in depth 

 

Go play with Matlab and check it out! 
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STOP 

EXAMPLE TIME 
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Quick plug* 

“Feedback Control of Dynamic Systems”            

by Franklin, Powell and Emami-Naeini. 

“Control System Design: An Introduction to 

State-Space Methods” by Friedland 

* No, they’re not paying me – they’re just really good books! 
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Tune-in next time for… 

 

Control/Planning Under Uncertainty 
Starring 

Hanna Kurniawati! 

 
Fun fact: Saying “eigenvalue” makes you feel smarter! 
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… 

 

And now a word from our 

hideous sponsor! 
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Discretisation FTW! 

• We can use the time-domain representation 

to produce difference equations! 
 

𝒙 𝑘𝑇 + 𝑇 = 𝑒𝐅𝑇 𝒙 𝑘𝑇 +  𝑒𝐅 𝑘𝑇+𝑇−𝜏 𝐆𝑢 𝜏 𝑑𝜏
𝑘𝑇+𝑇

𝑘𝑇

 

Notice 𝒖 𝜏  is not based on a discrete ZOH input, 

but rather an integrated time-series. 

We can structure this by using the form: 

𝑢 𝜏 = 𝑢 𝑘𝑇 , 𝑘𝑇 ≤ 𝜏 ≤ 𝑘𝑇 + 𝑇  
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Discretisation FTW! 

• Put this in the form of a new variable: 

𝜂 = 𝑘𝑇 + 𝑇 − 𝜏 

Then: 

𝒙 𝑘𝑇 + 𝑇 = 𝑒𝑭𝑇𝒙 𝑘𝑇 +  𝑒𝑭𝜂𝑑𝜂
𝑘𝑇+𝑇

𝑘𝑇

𝑮𝑢 𝑘𝑇  

 

Let’s rename 𝚽 = 𝑒𝑭𝑇 and 𝚪 =  𝑒𝑭𝜂𝑑𝜂
𝑘𝑇+𝑇

𝑘𝑇
𝑮 
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Discrete state matrices 

So, 
𝒙 𝑘 + 1 = 𝚽𝒙 𝑘 + 𝚪𝑢 𝑘  

 𝑦 𝑘 = 𝐇𝒙 𝑘 + 𝐉𝒖 𝑘  
 

Again, 𝒙 𝑘 + 1  is shorthand for 𝒙 𝑘𝑇 + 𝑇  

 

Note that we can also write 𝚽 as: 

𝚽 = 𝐈 + 𝐅𝑇𝚿 

where 

𝚿 = 𝐈 +
𝐅𝑇

2!
+
𝐅2𝑇2

3!
+ ⋯ 
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Simplifying calculation 

• We can also use 𝚿 to calculate 𝚪 

– Note that: 

Γ =  
𝐅𝑘𝑇𝑘

𝑘 + 1 !
𝑇𝐆 

∞

𝑘=0

 

 = 𝚿𝑇𝐆 

𝚿 itself can be evaluated with the series: 

𝚿 ≅ 𝐈 +
𝐅𝑇

2
𝐈 +

𝐅𝑇

3
𝐈 + ⋯

𝐅𝑇

𝑛 − 1
𝐈 +

𝐅𝑇

𝑛
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State-space z-transform 

We can apply the z-transform to our system: 

𝑧𝐈 − 𝚽 𝑿 𝑧 = 𝚪𝑈 𝑘  
𝑌 𝑧 = 𝐇𝑿 𝑧  

 

which yields the transfer function: 
𝑌 𝑧

𝑿(𝑧)
= 𝐺 𝑧 = 𝐇 𝑧𝐈 − 𝚽 −𝟏𝚪 
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State-space control design 
• Design for discrete state-space systems is 

just like the continuous case. 

– Apply linear state-variable feedback: 

𝑢 = −𝐊𝒙 

such that  det(𝑧𝐈 − 𝚽 + 𝚪𝐊) = 𝛼𝑐(𝑧) 

where 𝛼𝑐(𝑧) is the desired control characteristic equation 

 

Predictably, this requires the system controllability matrix 

𝓒 = 𝚪 𝚽𝚪     𝚽2𝚪 ⋯ 𝚽𝑛−1𝚪   to be full-rank. 
 


